45.4. FRACTIONAL ORDER SOBOLEV SPACES 1511

This proves the first part. Now consider the second. Let φ ∈C∞(Ω)

||Lφ ||m+σ ,p,Ω =

(||Lφ ||pm,p,Ω + ∑

|α|=m||Dα Lφ ||p

σ ,p,Ω

)1/p

=

(||Lφ ||pm,p,Ω + ∑

|α|=m||LDα

φ ||pT(W 1,p,Lp,p,1−σ)

)1/p

=

(||Lφ ||pm,p,Ω + ∑

|α|=m

[inf(∣∣∣∣t1−σ L fα

∣∣∣∣σ1

∣∣∣∣t1−σ L f ′α∣∣∣∣1−σ

2

)]p)1/p

(45.4.23)

whereinf(∣∣∣∣t1−σ L fα

∣∣∣∣σ1

∣∣∣∣t1−σ L f ′α∣∣∣∣1−σ

2

)=

inf(∣∣∣∣t1−σ L fα

∣∣∣∣σLp(0,∞; dt

t ;W 1,p(Ω))

∣∣∣∣t1−σ L f ′α∣∣∣∣1−σ

Lp(0,∞; dtt ;Lp(Ω))

),

fα (0)≡ limt→0 fα (t) = Dα φ in W 1,p (Ω)+Lp (Ω) , and the infimum is taken over all suchfunctions. Therefore, from 45.4.23, and letting ||L||1 denote the operator norm of L inW 1,p (Ω) and ||L||2 denote the operator norm of L in Lp (Ω) ,

||Lφ ||m+σ ,p,Ω

(||Lφ ||pm,p,Ω + ∑

|α|=m

[inf(||L||σ1 ||L||

1−σ

2

∣∣∣∣t1−σ fα

∣∣∣∣σ1

∣∣∣∣t1−σ f ′α∣∣∣∣1−σ

2

)]p)1/p

(||Lφ ||pm,p,Ω +

(||L||σ1 ||L||

1−σ

2

)p∑|α|=m

[inf(∣∣∣∣t1−σ fα

∣∣∣∣σ1

∣∣∣∣t1−σ f ′α∣∣∣∣1−σ

2

)]p)1/p

≤ C

(||φ ||pm,p,Ω + ∑

|α|=m

[||Dα

φ ||σ ,p,Ω

]p)1/p

=C ||φ ||m+σ ,p,Ω .

Since C∞(Ω)

is dense in all the Sobolev spaces, this inequality establishes the desiredresult.

Definition 45.4.6 Define for s≥ 0, W−s,p′ (Rn) to be the dual space of

W s,p (Rn) .

Here 1p +

1p′ = 1.

Note that in the case of m = 0 this is consistent with the Riesz representation theoremfor the Lp spaces.

45.4. FRACTIONAL ORDER SOBOLEV SPACES 1511This proves the first part. Now consider the second. Let @ € C” (Q)1/p£9 ||n+-o,p,.0 = Ca y ID" pa)|a|=m\/p= Canes L ILD winarps-e)|a|=m\/p- Ca y nro rzsllg EAI) (45.4.23)|@|=mwhere > _inf (|r °L fall? [|e °Lfall> °) =: _ _ 1-inf (|| °L falc (om:4t:w'(Q)) |e "Lal |iv(onsts10(0)))fo: (0) = lim, 40 fa (t) = D%@ in W!? (Q) +L? (Q), and the infimum is taken over all suchfunctions. Therefore, from 45.4.23, and letting ||L||, denote the operator norm of L inWwW! (Q) and ||L||, denote the operator norm of L in L? (Q),|L0||m+o,p,0oO l-o\)]?P Ve< Ca Y fine (2H 1F eH? fet Ppa let erally?)|a|=m1 P o l-o\]P VP< (ea (ei? WE) Y fine (\le- fall Jet * rally I)|a|=m> \/p< C(\e lena ¥ [IPL] =C\lO|msop.0|o|=mSince C® (Q) is dense in all the Sobolev spaces, this inequality establishes the desiredresult.Definition 45.4.6 Define for s > 0, W~*”" (IR") to be the dual space ofw*? (R").1,1 _Here pt 1.Note that in the case of m = 0 this is consistent with the Riesz representation theoremfor the L? spaces.