48.7. LIMIT CONDITIONS FOR NEMYTSKII OPERATORS 1583

the last term being bounded independent of t,n by assumption. Thus there exists c ∈L1 (0,T ) and a positive constant C such that

⟨zn (t) ,un (t)− y(t)⟩ ≥ −c(t)−C ||y(t)||pV . (48.7.26)

Letting y = u, we use Fatou’s lemma to write

lim infn→∞

∫ T

0

(⟨zn (t) ,un (t)−u(t)⟩+ c(t)+C ||u(t)||pV

)dt ≥

∫ T

0lim inf

n→∞⟨zn (t) ,un (t)−u(t)⟩+

(c(t)+C ||u(t)||pV

)dt

≥∫ T

0

(c(t)+C ||u(t)||pV

)dt.

Here, we added the term c(t)+C ||u(t)||pV to make the integrand nonnegative in order toapply Fatou’s lemma. Thus,

lim infn→∞

∫ T

0⟨zn (t) ,un (t)−u(t)⟩dt ≥ 0.

Consequently, using the claim in the last inequality,

0 ≥ lim supn→∞

⟨zn,un−u⟩V ′,V

≥ lim infn→∞

∫ T

0⟨zn (t) ,un (t)−u(t)⟩dt

= lim infn→∞⟨zn,un−u⟩V ′,V

≥∫ T

0lim inf

n→∞⟨zn (t) ,un (t)−u(t)⟩dt ≥ 0,

hence, we find thatlimn→∞⟨zn,un−u⟩V ′,V = 0. (48.7.27)

We need to show that if y is given in V then

lim infn→∞⟨zn,un− y⟩V ′,V ≥ ⟨z(y) ,u− y⟩ V ′,V , z(y) ∈ Âu

Suppose to the contrary that there exists y such that

η = lim infn→∞⟨zn,un− y⟩V ′,V < ⟨z,u− y⟩V ′,V , (48.7.28)

for all z ∈ Âu. Take a subsequence, denoted still with subscript n such that

η = limn→∞⟨zn,un− y⟩V ′,V

Thuslimn→∞⟨zn,un− y⟩V ′,V < ⟨z,u− y⟩V ′,V (48.7.29)

48.7. LIMIT CONDITIONS FOR NEMYTSKII OPERATORS 1583the last term being bounded independent of t,n by assumption. Thus there exists c €L' (0,T) and a positive constant C such that(én (t) un (t) —y(1)) 2 —e(t) —Clly ()|ly - (48.7.26)Letting y = u, we use Fatou’s lemma to writeTtim int [ ((én (0) (0) —u(t)) +e(0) +€ lu (0) |?) dt >[tir inf (nt) stm (1) (0)) + (e(0) +C lle (OI> [ (ce) +ellu(o|ip)ae.Here, we added the term c(t) +C||u(t)||? to make the integrand nonnegative in order toapply Fatou’s lemma. Thus,lim inf G (t) Un (t) —u(t))dt > 0.no JQ)Consequently, using the claim in the last inequality,0 > lim sup (Zn,Un—Uu) yyn—-pooT> liminf | (Zn (t),un(t)—u(t))dtn—-oo Jo= lim inf (zy,un) —u) yyn—yoo :T> lim inf (Zp (t) ,un (t) —u(t))dt > 0,0 n—yoohence, we find thatlim (ZnsUn —U)yry = 0. (48.7.27)n—-cooWe need to show that if y is given in VY thenlim inf (Zn, —y) yy = (z(v) uy) yy, 2(y) AuSuppose to the contrary that there exists y such that1) = lim inf (Zn,un —y)yty < (U—y)yry, (48.7.28)for all z € Au. Take a subsequence, denoted still with subscript n such thatn= tim (Zn, Un —Y)¥1.VThustim (Zn, Un —Y) vty < (Zu —Y) ay (48.7.29)