1606 CHAPTER 50. RIEMANN STIELTJES INTEGRALS

γ

(−2h+ t +

2hb−a

(t−a))(

1+2h

b−a

)}and so γh ∈C1 ([a,b]) . The following lemma is significant.

Lemma 50.0.8 V (γh, [a,b])≤V (γ, [a,b]) .

Proof: Let a = t0 < t1 < · · ·< tn = b. Then using the definition of γh and changing thevariables to make all integrals over [0,2h] ,

n

∑j=1

∣∣γh (t j)− γh(t j−1

)∣∣=n

∑j=1

∣∣∣∣ 12h

∫ 2h

0

(s−2h+ t j +

2hb−a

(t j−a))−

γ

(s−2h+ t j−1 +

2hb−a

(t j−1−a

))]∣∣∣∣≤ 1

2h

∫ 2h

0

n

∑j=1

∣∣∣∣γ(s−2h+ t j +2h

b−a(t j−a)

)−

γ

(s−2h+ t j−1 +

2hb−a

(t j−1−a

))∣∣∣∣ds.

For a given s∈ [0,2h] , the points, s−2h+ t j +2h

b−a (t j−a) for j = 1, · · · ,n form an increas-ing list of points in the interval [a−2h,b+2h] and so the integrand is bounded above byV (γ, [a−2h,b+2h]) =V (γ, [a,b]) . It follows

n

∑j=1

∣∣γh (t j)− γh(t j−1

)∣∣≤V (γ, [a,b])

which proves the lemma.With this lemma the proof of the theorem can be completed without too much trouble.

Let H be an open set containing γ∗ such that H is a compact subset of Ω. Let 0 < ε <dist(γ∗,HC

). Then there exists δ 1 such that if h < δ 1, then for all t,

|γ (t)− γh (t)| ≤1

2h

∫ t+ 2h(b−a) (t−a)

−2h+t+ 2h(b−a) (t−a)

|γ (s)− γ (t)|ds

<1

2h

∫ t+ 2h(b−a) (t−a)

−2h+t+ 2h(b−a) (t−a)

εds = ε (50.0.11)

due to the uniform continuity of γ. This proves 50.0.8.From 50.0.2 and the above lemma, there exists δ 2 such that if ||P|| < δ 2, then for all

z ∈ K, ∣∣∣∣∣∣∣∣∫γ

f (·,z)dγ (t)−S (P)

∣∣∣∣∣∣∣∣< ε

3,

∣∣∣∣∣∣∣∣∫γh

f (·,z)dγh (t)−Sh (P)

∣∣∣∣∣∣∣∣< ε

3

CHAPTER 50. RIEMANN STIELTJES INTEGRALSy(-2n414+ — (4) (14 5a) }and so y, € C! ({a,b]). The following lemma is significant.1606Lemma 50.0.8 V (¥,,[a,5]) < V (y,[a,5]).Proof: Let a= to < t) <---<t, =b. Then using the definition of y, and changing thevariables to make all integrals over [0,2],Lin( ti) —Y%p (tj- i)|=1 2h 2h_ _2h-+t; -—a)\—va ir(s h+ty+o— (tj )(s- aha (tj-1 -¢))|ds.2h(9-2-4 Thna (tj-1 -<))For a given s € [0, 2h], the points, s—2h+tj;+ 7 (t; — a) for j = 1,--- ,n form an increas-ing list of points in the interval [a —2h,b-+ 2h] and so the integrand is bounded above byV (y, |a—2h, b+ 2h]) = V (7, [a,b]) . It followsYE lrale) ma) SV (le)which proves the lemma.With this lemma the proof of the theorem can be completed without too much trouble.Let H be an open set containing y* such that H is a compact subset of Q. Let 0 < € <dist (y*,H©). Then there exists 5; such that if h < 6;, then for all r,caMO-MOl < sf. a» y_9lt-1Olas2h aht+tt Ggt+ 7 a a) (t—a)< al, eds =€ (50.0.11)2h 2htt+ ey (t—a)due to the uniform continuity of y. This proves 50.0.8.From 50.0.2 and the above lemma, there exists 62 such that if || A|| < 62, then for allzEK,€| [reaann-s)|<§.||f resents) <5