50.1. EXERCISES 1611

Now approximating with sums and using the definition,∫

γ1idz = γ1 (t j)− γ1

(t j−1

)and so

∫γ2 j

∫γ1i

f (γ1 (ti) ,γ2 (s j))dzdw = f (γ1 (ti) ,γ2 (s j))∫

γ2 j

∫γ1i

dzdw

= f (γ1 (ti) ,γ2 (s j))∫

γ1i

∫γ2 j

dwdz =∫

γ1i

∫γ2 j

f (γ1 (ti) ,γ2 (s j))dwdz(50.0.17)

Therefore, ∥∥∥∥∫γ1

∫γ2

f (z,w)dwdz−∫

γ2

∫γ1

f (z,w)dzdw∥∥∥∥≤

∥∥∥∥∥ ∑ni=1 ∑

mj=1∫

γ1i

∫γ2 j

f (z,w)dwdz−∑

ni=1 ∑

mj=1∫

γ1i

∫γ2 j

f (γ1 (ti) ,γ2 (s j))dwdz

∥∥∥∥∥+

∥∥∥∥∥ ∑ni=1 ∑

mj=1∫

γ1i

∫γ2 j

f (γ1 (ti) ,γ2 (s j))dwdz−∑

ni=1 ∑

mj=1∫

γ2 j

∫γ1i

f (γ1 (ti) ,γ2 (s j))dzdw

∥∥∥∥∥+

∥∥∥∥∥ ∑ni=1 ∑

mj=1∫

γ2 j

∫γ1i

f (γ1 (ti) ,γ2 (s j))dzdw−∑

ni=1 ∑

mj=1∫

γ2 j

∫γ1i

f (z,w)dzdw

∥∥∥∥∥From 50.0.17 the middle term is 0. Thus, from the estimates 50.0.16 and 50.0.15,∥∥∥∥∫

γ1

∫γ2

f (z,w)dwdz−∫

γ2

∫γ1

f (z,w)dzdw∥∥∥∥

≤ 2εV (γ2, [a2,b2])V (γ1, [a1,b1])

Since ε is arbitrary, the two integrals are equal.

50.1 Exercises1. Let γ : [a,b]→ R be increasing. Show V (γ, [a,b]) = γ (b)− γ (a) .

2. Suppose γ : [a,b]→C satisfies a Lipschitz condition, |γ (t)− γ (s)| ≤K |s− t| . Showγ is of bounded variation and that V (γ, [a,b])≤ K |b−a| .

3. γ : [c0,cm]→ C is piecewise smooth if there exist numbers, ck,k = 1, · · · ,m suchthat c0 < c1 < · · · < cm−1 < cm such that γ is continuous and γ : [ck,ck+1]→ C isC1. Show that such piecewise smooth functions are of bounded variation and give anestimate for V (γ, [c0,cm]) .

4. Let γ : [0,2π]→ C be given by γ (t) = r (cosmt + isinmt) for m an integer. Find∫γ

dzz .

5. Show that if γ : [a,b]→ C then there exists an increasing function h : [0,1]→ [a,b]such that γ ◦h([0,1]) = γ∗.

50.1. EXERCISES 1611Now approximating with sums and using the definition, f,, dz = 7, (tj) — 1% (tj-1) and soJ [ far. nb)azaw=son (nls) [ azawYap YNYap Yi= F(nti).r(6)) [dwdz= | FY (th) «%(s;)) dwaz(50.0.17)Ni? Y2; Ni % Y2;Therefore,[ ; f(z,w Jdwde— ff ST Zz, (aw)dedw| <Vi LiL Iy,, iy, f (ew) dwdzLL Sy lyf (n (ti) ,Yp (sj)) dwdzdi me =i bay f(% (i) Yo (sj) dwdzVi Sy, If f (N (ti). Yo (s;)) dzdw+ 1 j=l Sys, Jy, f f(N (ti), 2 (s sj))dzdw~ zie Viet Sy, Jy, f f (z,w) dzdwFrom 50.0.17 the middle term is 0. Thus, from the estimates 50.0.16 and 50.0.15,|/ f(z.w )dwae— [| SC Z, w) dadnN“ Y2< 2€V (%, [a2,b2])V (sla, bi)Since € is arbitrary, the two integrals are equal. Jj50.1 Exercises1. Let y: [a,b] > R be increasing. Show V (y, [a,b]) = y(b) — y(a).2. Suppose Y: [a,b] — C satisfies a Lipschitz condition, |y(t) — y(s)| < K|s—t|. Showy is of bounded variation and that V (7, |a,b]) < K|b-—al.3. Y: [co,Cm] > C is piecewise smooth if there exist numbers, cy,k = 1,---,m suchthat co < cy < +++ <Cm—1 < Cm such that y is continuous and y: [cxz,cx41] + C isC!. Show that such piecewise smooth functions are of bounded variation and give anestimate for V (Y, [co,Cm]) -4. Let y: [0,22] > C be given by y(t) = r(cosmt+isinmt) for m an integer. FinddzY 2°5. Show that if y: [a,b] — C then there exists an increasing function A : [0, 1] — [a,b]such that yoh((0,1]) = 7".