1622 CHAPTER 51. FUNDAMENTALS OF COMPLEX ANALYSIS

=

∥∥∥∥1h

∫ t ′+h

t ′φ t(s′,r)

dr−φ t (s, t)∥∥∥∥≤ 1

h

∫ t ′+h

t ′

∥∥φ t(s′,r)−φ t (s, t)

∥∥dr < ε

provided |(s′, t ′,h)− (s, t,0)| is small enough, this by continuity of φ t . Therefore, ∆(s, t,h)is uniformly continuous.∥∥∥∥1

h

(∫ b

aφ (s, t +h)ds−

∫ b

aφ (s, t)ds

)−∫ b

aφ t (s, t)ds

∥∥∥∥≤∫ b

a

∥∥∥∥φ (s, t +h)−φ (s, t)h

−φ t (s, t)∥∥∥∥ds =

∫ b

a∥∆(s, t,h)−φ t (s, t)∥ds

Then by uniform continuity, if h is small enough, the integrand on the right is smaller thanε .

The following is Cauchy’s integral formula for a disk.

Theorem 51.3.10 Let f : Ω→ X be analytic on the open set, Ω and let

B(z0,r)⊆Ω.

Let γ (t)≡ z0 + reit for t ∈ [0,2π] . Then if z ∈ B(z0,r) ,

f (z) =1

2πi

∫γ

f (w)w− z

dw. (51.3.9)

Proof: Consider for α ∈ [0,1] ,

g(α)≡∫ 2π

0

f(z+α

(z0 + reit − z

))reit + z0− z

rieitdt.

If α equals one, this reduces to the integral in 51.3.9. The idea is to show g is a constantand that g(0) = f (z)2πi. First consider the claim about g(0) .

g(0) =

(∫ 2π

0

reit

reit + z0− zdt)

i f (z)

= i f (z)

(∫ 2π

0

11− z−z0

reit

dt

)

= i f (z)∫ 2π

0

∑n=0

r−ne−int (z− z0)n dt

because∣∣∣ z−z0

reit

∣∣∣ < 1. Since this sum converges uniformly you can interchange the sum andthe integral to obtain

g(0) = i f (z)∞

∑n=0

r−n (z− z0)n∫ 2π

0e−intdt

= 2πi f (z)

1622 CHAPTER 51. FUNDAMENTALS OF COMPLEX ANALYSIS/' t!+hu <;/ ||, (s.r) —9,(s,0)\|dr<et'+h=[5/ ¢, (s',r) dr— 9, (s,t)provided |(s’,t’,/) — (s,t,0)| is small enough, this by continuity of ,. Therefore, A(s,t,h)is uniformly continuous.LE (formas [Poto.as) — [°a, (14sP(r FH) — Ost) ~ 6, (st)bas= | |A(s,t,h) — 6, (s,t)||dsbsfJaThen by uniform continuity, if h is small enough, the integrand on the right is smaller than€. iThe following is Cauchy’s integral formula for a disk.Theorem 51.3.10 Let f :Q— X be analytic on the open set, Q and letB(zo,r) CQ.Let y(t) =zo + re" fort € [0,2]. Then if z € B(z0,r),_ 1 (w)f() = 5 pana (51.3.9)Proof: Consider for a € [0,1],rie! dt.g(a) = [erator 2)Jo re’ +2 —ZIf @ equals one, this reduces to the integral in 51.3.9. The idea is to show g is a constantand that g (0) = f (z) 277i. First consider the claim about g (0).2a reit ;g(0) = (/ att) if (2)= if ( i i)ret!2% 2_ in) [ yrte™ (<—zo)"dtn=0< 1. Since this sum converges uniformly you can interchange the sum andretthe integral to obtainbecause | 27202g(0) = if(z) yr (<~20)" [ edtn=0= 27if (z