53.2. SINGULARITIES AND THE LAURENT SERIES 1683

Lemma 53.2.3 Let g be analytic on ann(a,R1,R2) . Then if γr (t)≡ a+ reit for t ∈ [0,2π]and r ∈ (R1,R2) , then

∫γr

g(z)dz is independent of r.

Proof: Let R1 < r1 < r2 < R2 and denote by −γr (t) the curve, −γr (t)≡ a+ rei(2π−t)

for t ∈ [0,2π] . Then if z∈ B(a,R1), Lemma 53.2.2 implies both n(γr2

,z)

and n(γr1

,z)= 1

and son(−γr1

,z)+n(γr2

,z)=−1+1 = 0.

Also if z /∈ B(a,R2) , then Lemma 53.2.2 implies n(

γr j,z)= 0 for j = 1,2. Therefore,

whenever z /∈ ann(a,R1,R2) , the sum of the winding numbers equals zero. Therefore,by Theorem 51.7.19 applied to the function, f (w) = g(z)(w− z) and z ∈ ann(a,R1,R2)\∪2

j=1γr j([0,2π]) ,

f (z)(n(γr2

,z)+n(−γr1

,z))

= 0(n(γr2

,z)+n(−γr1

,z))

=

12πi

∫γr2

g(w)(w− z)w− z

dw− 12πi

∫γr1

g(w)(w− z)w− z

dw

=1

2πi

∫γr2

g(w)dw− 12πi

∫γr1

g(w)dw

which proves the desired result.

53.2.2 The Laurent SeriesThe Laurent series is like a power series except it allows for negative exponents. First hereis a definition of what is meant by the convergence of such a series.

Definition 53.2.4 ∑∞n=−∞ an (z−a)n converges if both the series,

∑n=0

an (z−a)n and∞

∑n=1

a−n (z−a)−n

converge. When this is the case, the symbol, ∑∞n=−∞ an (z−a)n is defined as

∑n=0

an (z−a)n +∞

∑n=1

a−n (z−a)−n .

Lemma 53.2.5 Suppose

f (z) =∞

∑n=−∞

an (z−a)n

for all |z−a| ∈ (R1,R2) . Then both ∑∞n=0 an (z−a)n and ∑

∞n=1 a−n (z−a)−n converge abso-

lutely and uniformly on {z : r1 ≤ |z−a| ≤ r2} for any r1 < r2 satisfying R1 < r1 < r2 < R2.

53.2. SINGULARITIES AND THE LAURENT SERIES 1683Lemma 53.2.3 Let g be analytic on ann(a,R,R2). Then if y,(t) =a+re" fort € [0,27]and r € (R1,R2), then Sy, g (z) dz is independent of r.Proof: Let Rj <j < rz < Ry and denote by —y, (t) the curve, —7, (t) =a+rei?*—)fort € [0,27]. Then if z € B(a,R1), Lemma 53.2.2 implies both n (7,52) and n (%,, j=land so1(—Y,12) +A (%py1z) = 141 =0.Also if z ¢ B(a,R2), then Lemma 53.2.2 implies n (7,,:2) = 0 for j = 1,2. Therefore,whenever z ¢ ann(a,R,,R2), the sum of the winding numbers equals zero. Therefore,by Theorem 51.7.19 applied to the function, f (w) = g(z) (w—z) and z € ann(a,R1,R2) \Ut, ({0,27]) ?F (2) (™(Yrg2) +2 (M12) = 0 (2 (Ni s2) $0 (—%r,-2)) =1 of gwyw=2) 4, 1p gve)(w=2) 4,2Mi Jy, = WZ 2mi Jy, WZ1 1— g(w)dw— 5 | g (w) dwOni Jy, 2ni Jy,which proves the desired result.53.2.2 The Laurent SeriesThe Laurent series is like a power series except it allows for negative exponents. First hereis a definition of what is meant by the convergence of such a series.Definition 53.2.4 Y.,a,(z—a)" converges if both the series,N=—ocoYan (z—a)" and Y° a-n(z—a)"n=0 n=1converge. When this is the case, the symbol, Y__54n(z—a)" is defined asYe an (z—a)" + Yan (z—a)".n=0 n=1Lemma 53.2.5 Supposef(2)= Yo an(z—a)”n=—0ofor all |z—a| € (Ri,R2). Then both Y* 9 an (z—a)" andy, a_n (z—a) " converge abso-lutely and uniformly on {z:1r, < \z—a| < rz} for any r| < ry satisfying Ry <r) <1r2 < Ro.