1686 CHAPTER 53. RESIDUES

Therefore, by Lemma 53.2.3, for any r ∈ (R1,R2) ,

f (z) =∞

∑n=0

(1

2πi

∫γr

f (w)

(w−a)n+1 dw

)(z−a)n+

−1

∑n=−∞

(1

2πi

∫γr

f (w)

(w−a)n+1

)(z−a)n . (53.2.9)

and so

f (z) =∞

∑n=−∞

(1

2πi

∫γr

f (w)

(w−a)n+1 dw

)(z−a)n .

where r ∈ (R1,R2) is arbitrary. This proves the existence part of the theorem. It remains tocharacterize an.

If f (z) = ∑∞n=−∞ an (z−a)n on ann(a,R1,R2) let

fn (z)≡n

∑k=−n

ak (z−a)k . (53.2.10)

This function is analytic in ann(a,R1,R2) and so from the above argument,

fn (z) =∞

∑k=−∞

(1

2πi

∫γr

fn (w)

(w−a)k+1 dw

)(z−a)k . (53.2.11)

Also if k > n or if k <−n, (1

2πi

∫γr

fn (w)

(w−a)k+1 dw

)= 0.

and so

fn (z) =n

∑k=−n

(1

2πi

∫γr

fn (w)

(w−a)k+1 dw

)(z−a)k

which implies from 53.2.10 that for each k ∈ [−n,n] ,

12πi

∫γr

fn (w)

(w−a)k+1 dw = ak

However, from the uniform convergence of the series,

∑n=0

an (w−a)n

and∞

∑n=1

a−n (w−a)−n

1686 CHAPTER 53. RESIDUESTherefore, by Lemma 53.2.3, for any r € (R1,R2),f(z) = y (| fhe) (z—a)"+w—a)—| w— 1 w nf= 2» (sk [ ear iw) (z—a)".where r € (R,R2) is arbitrary. This proves the existence part of the theorem. It remains tocharacterize dy.If f(z) = 6 An (z—a)" on ann (a, Rj, R2) letand soin(z)= y ay (z—a)*. (53.2.10)k=—nThis function is analytic in ann (a,R,,R2) and so from the above argument,Sn (Zz) = y (: ft a] (z—a)*. (53.2.11)2ni Jy, (w—a)*!Also if k >n or if k < —n,1et _Sulw) Way =0.20i Y, (w—a)fn(Z) = y ( ! In(w iw) (c<—a)*tn \ 281 Sy, (wa)and sowhich implies from 53.2.10 that for each k € [—n, nl},1 fn(w)— | a awayni % (w—a)**!However, from the uniform convergence of the series,Yan (w—a)"n=0andYa (w—a)”