1708 CHAPTER 54. FUNCTIONAL ANALYSIS APPLICATIONS

By assumption |arg(t)| ≤ r <(

π

2 −φ)

and so

arg(w)+ arg(t)≥ (π−φ)− r =π

2+(

π

2−φ

)− r ≡ π

2+δ (r) , δ (r)> 0.

ei(argw+arg t) = cos(argw+ arg t)+ isin(argw+ arg t) , so cos(argw+ arg t)< 0

It follows the integral dominated by an expression of the form

eat 12π

∫∞

1/|t|exp(−c(r) |t|y) M

ydy = eat 1

∫∞

1exp(−c(r)x)

M |t|x

1|t|

dx

= eat 12π

∫∞

1exp(−c(r)x)

Mx

dx

where c(r)< 0 independent of |arg(t)| ≤ r. A similar estimate holds for the integral on thebottom segment. Thus for |arg(t)| ≤ r, ∥S (t)∥ is bounded by Meat for some constant M. Inparticular, ∥S (t)∥e−at is bounded for t ∈ [0,∞).

Now let x ∈ D(A) . From 54.3.6,

eλ t

λ(λ −A)−1 Ax+

eλ t

λx = eλ t (λ I−A)−1 x (54.3.14)

On the circular part of the contour, λ = a+ 1|t|e

iθ . Consider the first term on the left in theabove equation. The contour integral is of the form

∫π−φ

φ−π

eateei(θ+arg(t)) 1a+ 1

|t|eiθ

((a+

1|t|

eiθ)

I−A)−1

Axi|t|

eiθ dθ

which is dominated by

e∣∣eat ∣∣∫ π−φ

φ−π

1∣∣∣a+ 1|t|e

iθ∣∣∣ M∣∣∣ 1|t|e

iθ∣∣∣ ∥Ax∥ 1

|t|≤ eatM̂ ∥Ax∥

∫π−φ

φ−π

|t||a |t|+ eiθ |

≤ eatM̂ ∥Ax∥∫

π−φ

φ−π

|t|1−|a| |t|

which converges to 0 as t→ 0. On the other part of the contour, λ = yw+a where arg(w) =π−φ ,y > 1/ |t|.

eat

2πi

∫∞

1/|t|eywt 1

yw+a((yw+a) I−A)−1 wdy

As above, arg(w)+arg(t)> π

2 +δ (r) ,δ (r)> 0 for |arg t| ≤ r <(

π

2 −φ). Thus, as above,

this integral is dominated by

eat

∫∞

1/|t|e−y|t|c(r) 1

|yw+a|M|y|

dy =eat

∫∞

1e−uc(r) |t|

|uw+a |t||M|u|

du

1708 CHAPTER 54. FUNCTIONAL ANALYSIS APPLICATIONSBy assumption |arg (t)| <r < (4 —@) and soarg (w) +arg(t) > (a7) — r=F+(F-0)-r=F45(r), 5) >0.ellaew+arst) — eos (argw + arg) +isin(argw+argt), so cos (argw+argt) <0It follows the integral dominated by an expression of the form1 ose M 1 M|t| 1at _ t —d _— «— | _5m | cP (ela) ay eta [exp -e(r)) A ra1 oe}M= et | exp (—e(r).x) dxwhere c(r) < 0 independent of |arg (t)| <r. A similar estimate holds for the integral on thebottom segment. Thus for |arg (t)| < 7, ||S (t)|| is bounded by Me” for some constant M. Inparticular, ||S(z)||e~“ is bounded for t € [0,c°).Now let x € D(A). From 54.3.6,et enta (AA) Ant sows eM (AIA) x (54.3.14)On the circular part of the contour, A = a+ it i e’® Consider the first term on the left in theabove equation. The contour integral is of the formmo i ar, 1 1.[ eve elo raat — ((a+ é*) I-A) Ax e®d0Jo-x a+ tee It| ItiGwhich is dominated bym—$ 1 M 1 tele"| | , Axl < emi axl [* i —__ago-1 a+ qe he| It| ja|t| +e |eM ||Ax| [. aeaxIAwhich converges to 0 as t + 0. On the other part of the contour, A = yw+-a where arg (w) =a— gy > 1/ It|.etto0 1— eo” —___ ((yw+a)I—A) | wd20i I, ywra ( ) ) yAs above, arg (w) +arg (t) > 3 +6(r),6(r) > 0 for |argt| <r < (§ —@) . Thus, as above,this integral is dominated byen [ oil) 1M _ et fewo MM,Ml2n hy bwtal pl ah Juw + ale] [ul