58.1. PERIODIC FUNCTIONS 1835

Hence τ ′ = w′2/w′1 = (w1 +w2)/w1 = 1+ τ . Then from the definition of λ ,

λ(τ′) = λ (1+ τ)

=℘

(w′1+w′2

2

)−℘

(w′22

)℘

(w′12

)−℘

(w′22

)=

℘(w1+w2+w1

2

)−℘

(w1+w22

)℘(w1

2

)−℘

(w1+w22

)=

℘(w2

2 +w1)−℘

(w1+w22

)℘(w1

2

)−℘

(w1+w22

)=

℘(w2

2

)−℘

(w1+w22

)℘(w1

2

)−℘

(w1+w22

)= −

℘(w1+w2

2

)−℘

(w22

)℘(w1

2

)−℘

(w1+w22

)= −

℘(w1+w2

2

)−℘

(w22

)℘(w1

2

)−℘

(w22

)+℘

(w22

)−℘

(w1+w22

)

= −

(℘

(w1+w2

2

)−℘(w2

2 )℘(w1

2 )−℘(w22 )

)

1+

(℘(w2

2 )−℘

(w1+w2

2

)℘(w1

2 )−℘(w22 )

)

=

(℘

(w1+w2

2

)−℘(w2

2 )℘(w1

2 )−℘(w22 )

)(

(w1+w2

2

)−℘(w2

2 )℘(w1

2 )−℘(w22 )

)−1

=λ (τ)

λ (τ)−1. (58.1.16)

Summarizing the important feature of the above,

λ (1+ τ) =λ (τ)

λ (τ)−1. (58.1.17)

Next consider the other unimodular matrix in 58.1.15. In this case w′1 = w2 and w′2 = w1.

58.1. PERIODIC FUNCTIONS 1835Hence t! = w5/w) = (wi +w2) /w; = 1+. Then from the definition of 1,A(t’) = AC+7)o( 84) ~0(9)o()-0()e (Me) — ("3")(1) — (M4)e(F+wi)-e(7)(3) -0(45")3) p(s")= . 58.1.16A(t) -1 ( )Summarizing the important feature of the aboveA(t)A(1 = . 58.1.17Next consider the other unimodular matrix in 58.1.15. In this case wi = Ww» and ws =wy.