58.1. PERIODIC FUNCTIONS 1837
From the original formula for ℘,
℘
(1+ τ
2
)−℘
(τ
2
)=
1( 1+τ
2
)2 −1(τ
2
)2 + ∑(k,m)̸=(0,0)
1(k− 1
2 +(m− 1
2
)τ)2 −
1(k+(m− 1
2
)τ)2
= ∑(k,m)∈Z2
1(k− 1
2 +(m− 1
2
)τ)2 −
1(k+(m− 1
2
)τ)2
= ∑(k,m)∈Z2
1(k− 1
2 +(m− 1
2
)τ)2 −
1(k+(m− 1
2
)τ)2
= ∑(k,m)∈Z2
1(k− 1
2 +(−m− 1
2
)τ)2 −
1(k+(−m− 1
2
)τ)2
= ∑(k,m)∈Z2
1( 12 +(m+ 1
2
)τ− k
)2 −1((
m+ 12
)τ− k
)2 . (58.1.21)
Similarly,
℘
(12
)−℘
(τ
2
)=
1( 12
)2 −1(τ
2
)2 + ∑(k,m)̸=(0,0)
1(k− 1
2 +mτ)2 −
1(k+(m− 1
2
)τ)2
= ∑(k,m)∈Z2
1(k− 1
2 +mτ)2 −
1(k+(m− 1
2
)τ)2
= ∑(k,m)∈Z2
1(k− 1
2 −mτ)2 −
1(k+(−m− 1
2
)τ)2
= ∑(k,m)∈Z2
1( 12 +mτ− k
)2 −1((
m+ 12
)τ− k
)2 . (58.1.22)
Now use 58.1.19 to sum these over k. This yields,
℘
(1+ τ
2
)−℘
(τ
2
)= ∑
m
π2
sin2 (π( 1
2 +(m+ 1
2
)τ)) − π2
sin2 (π(m+ 1
2
)τ)
= ∑m
π2
cos2(π(m+ 1
2
)τ) − π2
sin2 (π(m+ 1
2
)τ)