58.1. PERIODIC FUNCTIONS 1837

From the original formula for ℘,

(1+ τ

2

)−℘

2

)=

1( 1+τ

2

)2 −1(τ

2

)2 + ∑(k,m)̸=(0,0)

1(k− 1

2 +(m− 1

2

)τ)2 −

1(k+(m− 1

2

)τ)2

= ∑(k,m)∈Z2

1(k− 1

2 +(m− 1

2

)τ)2 −

1(k+(m− 1

2

)τ)2

= ∑(k,m)∈Z2

1(k− 1

2 +(m− 1

2

)τ)2 −

1(k+(m− 1

2

)τ)2

= ∑(k,m)∈Z2

1(k− 1

2 +(−m− 1

2

)τ)2 −

1(k+(−m− 1

2

)τ)2

= ∑(k,m)∈Z2

1( 12 +(m+ 1

2

)τ− k

)2 −1((

m+ 12

)τ− k

)2 . (58.1.21)

Similarly,

(12

)−℘

2

)=

1( 12

)2 −1(τ

2

)2 + ∑(k,m)̸=(0,0)

1(k− 1

2 +mτ)2 −

1(k+(m− 1

2

)τ)2

= ∑(k,m)∈Z2

1(k− 1

2 +mτ)2 −

1(k+(m− 1

2

)τ)2

= ∑(k,m)∈Z2

1(k− 1

2 −mτ)2 −

1(k+(−m− 1

2

)τ)2

= ∑(k,m)∈Z2

1( 12 +mτ− k

)2 −1((

m+ 12

)τ− k

)2 . (58.1.22)

Now use 58.1.19 to sum these over k. This yields,

(1+ τ

2

)−℘

2

)= ∑

m

π2

sin2 (π( 1

2 +(m+ 1

2

)τ)) − π2

sin2 (π(m+ 1

2

)τ)

= ∑m

π2

cos2(π(m+ 1

2

)τ) − π2

sin2 (π(m+ 1

2

)τ)

58.1. PERIODIC FUNCTIONS 1837From the original formula for g,(58.1.21)Similarly,1 1 rl rl=a Tat a7 7(5) 5)" &m\F(0.0) (K-53 +m)” (k+ (m—3)7)1 1(mez? (k— 4 +mt)” (k+(m—35) t)”1 1wumecs (R—$—me)? (b+ (m=) 9)i 1~ - (58.1.22)eee (£4+mt—k)° ((m+4 tk)Now use 58.1.19 to sum these over k. This yields,o(5*)-0(5)