1908 CHAPTER 59. BASIC PROBABILITY
Lemma 59.15.5 Let E be a real separable Banach space. Assume ξ 1, · · · ,ξ N are indepen-dent random variables having values in E, a separable Banach space which have symmet-ric distributions. Also let Sk = ∑
ki=1 ξ i. Then for any r > 0,
P
([supk≤N||Sk||> r
])≤ 2P([||SN ||> r]) .
Proof: First of all,
P
([supk≤N||Sk||> r
])
= P
([supk≤N||Sk||> r and ||SN ||> r
])
+P
([sup
k≤N−1||Sk||> r and ||SN || ≤ r
])
≤ P([||SN ||> r])+P
([sup
k≤N−1||Sk||> r and ||SN || ≤ r
]). (59.15.26)
I need to estimate the second of these terms. Let
A1 ≡ [||S1||> r] , · · · ,Ak ≡[||Sk||> r,
∣∣∣∣S j∣∣∣∣≤ r for j < k
].
Thus Ak consists of those ω where ||Sk (ω)||> r for the first time at k. Thus[sup
k≤N−1||Sk||> r and ||SN || ≤ r
]= ∪N−1
j=1 A j ∩ [||SN || ≤ r]
and the sets in the above union are disjoint. Consider A j ∩ [||SN || ≤ r] . For ω in this set,∣∣∣∣S j (ω)∣∣∣∣> r, ||Si (ω)|| ≤ r if i < j.
Since ||SN (ω)|| ≤ r in this set, it follows
||SN (ω)||=
∣∣∣∣∣∣∣∣∣∣S j (ω)+
N
∑i= j+1
ξ i (ω)
∣∣∣∣∣∣∣∣∣∣≤ r
ThusP(A j ∩ [||SN || ≤ r]) (59.15.27)
= P
(∩ j−1
i=1 [||Si|| ≤ r]∩[∣∣∣∣S j
∣∣∣∣> r]∩
[∣∣∣∣∣∣∣∣∣∣S j +
N
∑i= j+1
ξ i
∣∣∣∣∣∣∣∣∣∣≤ r
])(59.15.28)