1916 CHAPTER 59. BASIC PROBABILITY

Let E = X−11 (A) and

F = (X2, · · · ,Xp)−1 (B)

where A and B are Borel sets in R and Rp−1 respectively. Thus I need to verify that

P([(X1,(X2, · · · ,Xp)) ∈ (A,B)]) =

µ(X1,(X2,··· ,Xp)) (A×B) = µX1(A)µ(X2,··· ,Xp) (B) . (59.16.36)

Using 59.16.35, Fubini’s theorem, and definitions,

µ(X1,(X2,··· ,Xp)) (A×B) =

∫Rp

XA×B (x)1

(2π)p/2 det(Σ)1/2 e−12 (x−m)∗Σ−1(x−m)dx

=∫R

XA (x1)∫Rp−1

XB (X2, · · · ,Xp) ·

1

(2π)(p−1)/2√2π(σ2

1

)1/2 det(Σp−1)1/2

e−(x1−m1)

2

2σ21 ·

e−12 (x′−m′)

∗Σ−1p−1

(x′−m′

)dx′dx1

where x′ = (x2, · · · ,xp) and m′ = (m2, · · · ,mp) . Now this equals

∫R

XA (x1)1√

2πσ21

e−(x1−m1)

2

2σ21

∫B

1

(2π)(p−1)/2 det(Σp−1)1/2 · (59.16.37)

e−12 (x′−m′)

∗Σ−1p−1

(x′−m′

)dx′dx. (59.16.38)

In case B = Rp−1, the inside integral equals 1 and

µX1(A) = µ(X1,(X2,··· ,Xp))

(A×Rp−1)

=∫R

XA (x1)1√

2πσ21

e−(x1−m1)

2

2σ21 dx1

which shows X1 is normally distributed as claimed. Similarly, letting A = R,

µ(X2,··· ,Xp) (B)

= µ(X1,(X2,··· ,Xp)) (R×B)

=∫

B

1

(2π)(p−1)/2 det(Σp−1)1/2 e

−12 (x′−m′)

∗Σ−1p−1

(x′−m′

)dx′

1916 CHAPTER 59. BASIC PROBABILITYLet E = X,'(A) andF= (X2,-°° Xp)! (B)where A and B are Borel sets in R and R?~! respectively. Thus I need to verify thatP([(X1, (X2,- - ,Xp)) € (A,B)]) =Hix, (Xp, Xp)) (A x B)= Hy, (A) H(x,,.--.x,) (B). (59.16.36)Using 59.16.35, Fubini’s theorem, and definitions,M(x, (X2,-.Xp)) (Ax B) =1 =1 xy(x—m)*~* (x—m)[, BA xB (X ) myPPaet (5) 2 ine e2 dx/ 7x(x1) | KB (X2,-++ Xp)R Rp-!=(x4=m)ae(2m) (0) /? 3x (63)! det (Zp_1)"/?oo (xm) Ep (x =m) adenwhere x’ = (x2,-++ xp) and m! = (mp,--- ,m,). Now this equalsig 120 .I 2% (x1) Tanai’ [ om Pee (59.16.37)sl (x! L(y!oF (tm! va +) arts. (59.16.38)In case B = R?—', the inside integral equals 1 andHx (A) = Mex, (x~.x,)) (A xR?!)ae= [2a x1) er dxyoxo?which shows Xj is normally distributed as claimed. Similarly, letting A = R,Hix)... xp) (B)= M(x (op) (RX)| 1 oo (kom! )" rt - (x -m’) dx’JB (20) Y/? det (Zp_1)!/?