60.6. SUBMARTINGALE CONVERGENCE THEOREM 1967
upcrossings, consider the following:
τ0 ≡ min(inf{k : X (k)≤ a} ,M) ,
τ1 ≡ min(inf{
k : (X (k∨ τ0)−X (τ0))+ ≥ b−a},M),
τ2 ≡ min(inf{
k : (X (τ1)−X (k∨ τ1))+ ≥ b−a},M),
τ3 ≡ min(inf{
k : (X (k∨ τ2)−X (τ2))+ ≥ b−a},M),
τ4 ≡ min(inf{
k : (X (τ3)−X (k∨ τ3))+ ≥ b−a},M),
...
As usual, inf( /0)≡ ∞. Are the above stopping times? If α ≥ 0, and τ is a stopping time, isk→ (X (τ)−X (k∨ τ))+ adapted?[
(X (τ)−X (k∨ τ))+ > α]=[(X (τ)−X (k))+ > α
]∩ [τ ≤ k]
Now [(X (τ)−X (k))+ > α
]∩ [τ ≤ k] = ∪k
i=0[(X (i)−X (k))+ > α
]∩ [τ ≤ k] ∈Fk
If α < 0, then [(X (τ1)−X (k∨ τ1))+ > α
]= Ω
and so k→ (X (τ)−X (k∨ τ))+ is adapted. Similarly k→ (X (k∨ τ)−X (τ))+ is adapted.Therefore, all those τk are stopping times.
Now consider the following random variable for odd M, 2n+1 = M
U [a,b]M ≡ lim
ε→0
n
∑k=0
X (τ2k+1)−X (τ2k)
ε +X (τ2k+1)−X (τ2k)≤ 1
b−a
n
∑k=0
X (τ2k+1)−X (τ2k)
Now suppose {X (k)} is a nonnegative submartingale. Then since E (X (2τ) |F2τ−1)≥X (τ2k−1)
E
(n
∑k=1
X (τ2k)−X (τ2k−1)
)≥ 0
Hence
E(
U [a,b]M
)≤ 1
b−a
n
∑k=0
E (X (τ2k+1)−X (τ2k))
≤ 1b−a
n
∑k=0
E (X (τ2k+1)−X (τ2k))+1
b−a
n
∑k=1
E (X (τ2k)−X (τ2k−1))
=1
b−a
n
∑k=0
E (X (τk)−X (τk−1))≤1
b−aE (X (τk))
Now by the optional sampling theorem X (0) ,X (τk) ,X (M) is a submartingale. Therefore,the above is no larger than
1b−a
E (|X (M)|)