1970 CHAPTER 60. CONDITIONAL, MARTINGALES
and so, subtracting the last term on the right from both sides,
E(X+
n)≥
∫[maxk Xk≥λ ]
XndP =∫[maxk Xk≥λ ]
XT dP
≥ λP([
maxk
Xk ≥ λ
])because XT (ω)≥ λ on [maxk Xk ≥ λ ] from the definition of T . This establishes 60.6.12.
Next let T (ω) be the first time Xk (ω) is≤−λ or if this does not happen for k≤ n, thenT (ω)≡ n. Then this is a stopping time by similar reasoning and 1≤ T (ω)≤ n are stoppingtimes and so by the optional stopping theorem, X1,XT ,Xn is a submartingale. Therefore, on[
mink
Xk ≤−λ
], XT (ω)≤−λ
and E (XT |F1)≥ X1 and so
E (X1)≤ E (E (XT |F1)) = E (XT )
which implies
E (X1) ≤ E (XT ) =∫[mink Xk≤−λ ]
XT dP+∫[mink Xk>−λ ]
XT dP
=∫[mink Xk≤−λ ]
XT dP+∫[mink Xk>−λ ]
XndP
and so
E (X1)−∫[mink Xk>−λ ]
XndP ≤∫[mink Xk≤−λ ]
XT dP
≤ −λP([
mink
Xk ≤−λ
])which implies
λP([
mink
Xk ≤−λ
])≤
∫[mink Xk>−λ ]
XndP−E (X1)
≤∫
Ω
(|Xn|+ |X1|)dP
and this proves 60.6.13.The last estimate follows from these. Here is why.[
max1≤k≤n
|Xk| ≥ λ
]⊆[
max1≤k≤n
Xk ≥ λ
]∪[
min1≤k≤n
Xk ≤−λ
]and so
λP([
max1≤k≤n
|Xk| ≥ λ
])≤ λP
([max
1≤k≤nXk ≥ λ
]∪[
min1≤k≤n
Xk ≤−λ
])