1976 CHAPTER 60. CONDITIONAL, MARTINGALES
converges a.e. Therefore, there exists a set of measure zero such that for ω not in this set,∑n (Xn (ω) ,ek)H converges for each k. For ω not in this exceptional set, define
Yk (ω)≡∞
∑n=1
(Xn (ω) ,ek)H
Next define
S (ω)≡∞
∑k=1
Yk (ω)ek. (60.7.17)
Of course it is not clear this even makes sense. I need to show ∑∞k=1 |Yk (ω)|2 < ∞. Using
the independence of the Xn
E(|Yk|2
)= E
( ∞
∑n=1
(Xn,ek)H
)2
= E
((∞
∑n=1
∞
∑m=1
(Xn,ek)H (Xm,ek)H
))
≤ lim infN→∞
E
((N
∑n=1
N
∑m=1
(Xn,ek)H (Xm,ek)H
))
= lim infN→∞
E
(N
∑n=1
(Xn,ek)2H
)
=∞
∑n=1
E((Xn,ek)
2H
)Hence from the above,
E
(∑k|Yk|2
)= ∑
kE(|Yk|2
)≤∑
k∑n
E((Xn,ek)
2H
)and by the monotone convergence theorem or Fubini’s theorem,
= E
(∑k
∑n(Xn,ek)
2H
)= E
(∑n
∑k(Xn,ek)
2H
)
= E(
∑n|Xn|2H
)= ∑
nE(|Xn|2H
)< ∞ (60.7.18)
Therefore, for ω off a set of measure zero, and for
Yk (ω)≡∞
∑n=1
(Xn (ω) ,ek)H ,
∑k|Yk (ω)|2 < ∞