61.4. A MAJOR EXISTENCE AND CONVERGENCE THEOREM 2001

Since ε > 0 is arbitrary, this shows m((Xν)−1 (∂Ai1,··· ,im)

)= 0.

If ω ∈ Iνi1,··· ,im , then from the construction, Zν

p (ω) ∈ int(Ai1,··· ,im) for all p ≥ k. There-fore, taking a limit, as p→ ∞,

Xν (ω) ∈ int(Ai1,··· ,im)∪∂Ai1,··· ,im

and soIνi1,··· ,im ⊆ (Xν)

−1(int(Ai1,··· ,im)∪∂Ai1,··· ,im)

but also, if Xν (ω) ∈ int(Ai1,··· ,im) , then Zνp (ω) ∈ int(Ai1,··· ,im) for all p large enough and

so

(Xν)−1

(int(Ai1,··· ,im))

⊆ Iνi1,··· ,im ⊆ (Xν)

−1(int(Ai1,··· ,im)∪∂Ai1,··· ,im)

Therefore,

m((Xν)

−1(int(Ai1,··· ,im))

)≤ m

(Iνi1,··· ,im

)≤ m

((Xν)

−1(int(Ai1,··· ,im))

)+m

((Xν)

−1(∂Ai1,··· ,im)

)= m

((Xν)

−1(int(Ai1,··· ,im))

)which shows

m((Xν)

−1(int(Ai1,··· ,im))

)= m

(Iνi1,··· ,im

)= ν (Ai1,··· ,im) . (61.4.11)

Also

m((Xν)

−1(int(Ai1,··· ,im))

)≤ m

((Xν)

−1(Ai1,··· ,im)

)≤ m

((Xν)

−1(int(Ai1,··· ,im)∪∂Ai1,··· ,im)

)= m

((Xν)

−1(int(Ai1,··· ,im))

)Hence from 61.4.11,

ν (Ai1,··· ,im) = m((Xν)

−1(int(Ai1,··· ,im))

)= m

((Xν)

−1(Ai1,··· ,im)

)(61.4.12)

Now let U be an open set in E. Then letting

Hk ={

x ∈U : dist(x,UC)≥ rk

}

61.4. A MAJOR EXISTENCE AND CONVERGENCE THEOREM 2001Since € > 0 is arbitrary, this shows m ((x") (IAig in) =0.If@e Ti... ;,» then from the construction, Zp (@) € int (Aj, .... ;,,) for all p > k. There-fore, taking a limit, as p > ©,x’ (@) € int (Ai, .--- sim) U OAj,.... “imand so ;Ti, in c (x")~ (int (Aig sim) UdAi, in)but also, if XY (@) € int (Aj,....,;,,), then Z; (@) € int (Aj,....i,,) for all p large enough andNo)(XY) 1 (imt (Aj, in)CW (XY)! (int (Aj...) UOAA jp)Us lmTherefore,m (XY) int (Ain)(< m(IY...,)<_m((X¥)" Gimt(Aiy oo dn))) Ho (RP) (Aino sin)= m((X¥)" (int (Ai, .-.in)))which showsm ((x") | (int (Ais-.in))) =m (IP. 5) =V (Aisin): (61.4.11)Alsom((X¥)! (int (Ai, i)INIA3 3I3Hence from 61.4.11,=m((x") (Ais-.in)) (61.4.12)Now let U be an open set in E. Then lettingH, = {x EU: dist (x,U°) > ri}