61.5. BOCHNER’S THEOREM IN INFINITE DIMENSIONS 2005

Next suppose the conditions hold. Define for t ∈ Rn and {y1, · · · ,yn} ⊆ Λ

ψ{y1,··· ,yn} (t)≡ ψ

(n

∑j=1

t jy j

).

Then ψ{y1,··· ,yn} is continuous at 0, equals 1 there, and is positive definite. It follows fromBochner’s theorem, Theorem 59.21.7 on Page 1943 there exists a measure µ{y1,··· ,yn} de-fined on the Borel sets of Rn such that

ψ

(n

∑j=1

t jy j

)= ψ{y1,··· ,yn} (t) =

∫Rn

eit·xdµ{y1,··· ,yn} (x) . (61.5.16)

Thus if{

y1, · · · ,yn,yn+1, · · · ,yp}⊆ Λ,

ψ

(n

∑j=1

t jy j +p−n

∑j=1

s jy j+n

)= ψ{y1,··· ,yp} (t,s)

=∫Rp−n

eis·x∫Rn

eit·xdµ{y1,··· ,yp} (x)

I need to verify the measures are consistent to use Kolmogorov’s theorem. Specifically, Ineed to show

µ{y1,··· ,yp}(A×Rp−n)= µ{y1,··· ,yn} (A) .

Lettingλ (A) = µ{y1,··· ,yp}

(A×Rp−n)

it follows ∫Rn

eit·xdλ =∫Rp−n

∫Rn

eit·xdµ{y1,··· ,yp} (x)

=∫Rp−n

ei0·x∫Rn

eit·xdµ{y1,··· ,yp} (x)

= ψ

(n

∑j=1

t jy j +p−n

∑j=1

0y j+n

)

= ψ

(n

∑j=1

t jy j

)=

∫Rn

eit·xdµ{y1,··· ,yn} (x)

and so, by uniqueness of characteristic functions,

λ = µ{y1,··· ,yn}

which verifies the necessary consistency condition for Kolmogorov’s theorem.

61.5. BOCHNER’S THEOREM IN INFINITE DIMENSIONS 2005Next suppose the conditions hold. Define for t € R” and {y1,--- ,yn} CAVon} OD SW (s wi) ,J=1Then yw Oran} is continuous at 0, equals | there, and is positive definite. It follows fromBochner’s theorem, Theorem 59.21.7 on Page 1943 there exists a measure {yr yn} de-fined on the Borel sets of IR” such thaty (Sem) = Voy, ey} (E) = [ OAM gy yn} (61.5.16)jalThus if {y1," ** ys Ynys Yn+15°°° yp} C A,n ponVi Letiit Ve sivin] = Vg yp} (OS)ftis-x it-x[8 Joe Ab, yp}I need to verify the measures are consistent to use Kolmogorov’s theorem. Specifically, Ineed to showMey, yy} (A x R?~") = My yp} (A) .LettingA (A) = Heys yp} (Ax R?”)it followsit-x _ it-x[ue dA = I... [ue ne (x)i0-x it-xIe [oe AM sy... yp} @)n p-n= Vv (s tit) vise]j=l j=l= (Seo)jal= I. CNM ey, yn} (x)and so, by uniqueness of characteristic functions,A= My yn}which verifies the necessary consistency condition for Kolmogorov’s theorem.