61.7. GAUSSIAN MEASURES 2019

Consequently, αn (r)≤ α0 (r)2n

and also

P(||X ||> tn) = αn (r)P(||X || ≤ r)

≤ P(||X || ≤ r)α0 (r)2n

= P(||X || ≤ r)eln(α0(r))2n. (61.7.27)

Now using the distribution function technique and letting λ > 0,∫E

eλ ||x||2dµ =∫

([eλ ||x||2 > t

])dt

= 1+∫

([eλ ||x||2 > t

])dt

= 1+∫

1P([

eλ ||X ||2 > t])

dt. (61.7.28)

From 61.7.27,

P([

exp(

λ ||X ||2)> exp

(λ t2

n)])≤ P([||X || ≤ r])eln(α0(r))2n

.

Now split the above improper integral into intervals,(exp(λ t2

n),exp

(λ t2

n+1))

for n =

0,1, · · · and note that P([

eλ ||X ||2 > t])

is decreasing in t. Then from 61.7.28,

∫E

eλ ||x||2 dµ ≤ exp(λ r2)+ ∞

∑n=0

∫ exp(λ t2n+1)

exp(λ t2n)

P([

eλ ||X ||2 > t])

dt

≤ exp(λ r2)+ ∞

∑n=0

P([

eλ ||X ||2 > exp(λ t2

n)])(

exp(λ t2

n+1)− exp

(λ t2

n))

≤ exp(λ r2)+ ∞

∑n=0

P([||X || ≤ r])eln(α0(r))2nexp(λ t2

n+1)

≤ exp(λ r2)+ ∞

∑n=0

eln(α0(r))2nexp(λ t2

n+1).

It remains to estimate tn+1. From the description of the tn,

tn =

(n

∑k=0

(√2)k)

r = r

(√2)n+1

−1√

2−1≤√

2√2−1

r(√

2)n

and sotn+1 ≤ 5r

(√2)n

Therefore, ∫E

eλ ||x||2 dµ ≤ exp(λ r2)+ ∞

∑n=0

eln(α0(r))2n+λ25r22n.

61.7. GAUSSIAN MEASURES 2019Consequently, a, (r) < a9 (r)” and alsoP(|X|| >t) = Gn(r)P (|X| <r)P(\|X|| <1) oo (r)?P(\|X|| <r) elmo)?" (61.7.27)IANow using the distribution function technique and letting A > 0,[eau _ fw (leh >a= 1+ u (fet > 11) at= 1+ [P(e >t] dr. (61.7.28)From 61.7.27,P ([exp (2 IIXII) > exp (Ati)]) < P({l|XI] <r eoNow split the above improper integral into intervals, (exp (Ar?) ,exp (Artz, ,)) for n =0,1,--- and note that P (err > ‘}) is decreasing in t. Then from 61.7.28,| All ay < exp (Ar?) + y [eee (fe? S t]) atE - n—0 exp(A1?)IAexp (Ar’) “ye ([erith > exp (ani)|) (exp (Ati+1) —exp (Arz))IAexp (Ar?) +5 P((l|X|| <r]) e200" exp (42,1)n=0< exp (Ar?) + Yel)" exp (Anz) «n=0It remains to estimate t,1. From the description of the fy,; ; ayy a ;(E00) 9V2-1and sotno <5r (v2)"Therefore,©[eau < exp (Ar?) + J elnlato(r)) 20442522"E n=0