2038 CHAPTER 61. PROBABILITY IN INFINITE DIMENSIONS

Let P denote an orthogonal projection in F ({ek}) such that PPN = 0. Thus P is the pro-jection on to span(ei1 , · · · ,eim) where each ik > N. Then

ν ({x ∈ H : ||Px||> ε})= ν ({x ∈ H : |APx|> ε})

Now Px = ∑mj=1(x,ei j

)ei j and the above reduces to

ν

({x ∈ H :

∣∣∣∣∣ m

∑j=1

(x,ei j

)Aei j

∣∣∣∣∣> ε

})≤

ν

x ∈ H :

(m

∑j=1

∣∣(x,ei j

)∣∣2)1/2( m

∑j=1

∣∣Aei j

∣∣2)1/2

> ε



≤ ν

x ∈ H :

(m

∑j=1

∣∣(x,ei j

)∣∣2)1/2

α1/2 > ε



= ν

x ∈ H :

(m

∑j=1

∣∣(x,ei j

)∣∣2)1/2

α1/2



= ν

({x ∈ H : ((x,ei1) , · · · ,(x,eim)) ∈ B

(0,

ε

α1/2

)C})

≤ ν

({x ∈ H : max

{∣∣(x,ei j

)∣∣}> ε√

mα1/2

})This is no larger than

1(√2π)m

∫|t1|> ε√

m√

α

∫|t2|> ε√

m√

α

· · ·∫|tm|> ε√

m√

α

e−|t|2/2dtm · · ·dt1

=

2∫

ε/(√

mα1/2) e−t2/2dt√

m

which by Jensen’s inequality is no larger than

2∫

ε/(√

mα1/2) e−mt2/2dt√

2π=

2 1√m

∫∞

ε/(α1/2) e−t2/2dt√

≤2∫

ε/(ε/r) e−t2/2dt√

=2∫

r e−t2/2dt√2π

< ε

By 61.9.42. This proves the lemma.

2038 CHAPTER 61. PROBABILITY IN INFINITE DIMENSIONSLet P denote an orthogonal projection in -¥ ({e,}) such that PPy = 0. Thus P is the pro-jection on to span (e;,,--- ,é;,,) Where each iz > N. Thenv ({x € H : ||Px|| > €})= v({xeH: |APx| > e})eh) <Now Px = i= 1 (x, ej. je ei and the above reduces tom» (x, ei;) Aei,j=lm 2 1/2 m 2 1/2Vv x€H: (¥ los." ($s) >eEj=l1/2< ov {re (E loss") alsejJ=1m 1/2 ¢= Vv xe€H: (E loss? > GifCc=v ({ reused (x, éi,,)) € B (0.55) \)< v({reHsmax{\(nes)|} > era}This is no larger than1 t|*/2waar I | of Oty «deyVL lnl> Sve l2I> eve ltm|> Tingaco 2 m2 Sei(ymail2) © ' (dtV20which by Jensen’s inequality is no larger than2 Sei ( yma! pyem Pat 2 Fej(quaye@ PatVin - Vin= elie e! Pat~ V2a2 fee" at= Wort €By 61.9.42. This proves the lemma.