2038 CHAPTER 61. PROBABILITY IN INFINITE DIMENSIONS
Let P denote an orthogonal projection in F ({ek}) such that PPN = 0. Thus P is the pro-jection on to span(ei1 , · · · ,eim) where each ik > N. Then
ν ({x ∈ H : ||Px||> ε})= ν ({x ∈ H : |APx|> ε})
Now Px = ∑mj=1(x,ei j
)ei j and the above reduces to
ν
({x ∈ H :
∣∣∣∣∣ m
∑j=1
(x,ei j
)Aei j
∣∣∣∣∣> ε
})≤
ν
x ∈ H :
(m
∑j=1
∣∣(x,ei j
)∣∣2)1/2( m
∑j=1
∣∣Aei j
∣∣2)1/2
> ε
≤ ν
x ∈ H :
(m
∑j=1
∣∣(x,ei j
)∣∣2)1/2
α1/2 > ε
= ν
x ∈ H :
(m
∑j=1
∣∣(x,ei j
)∣∣2)1/2
>ε
α1/2
= ν
({x ∈ H : ((x,ei1) , · · · ,(x,eim)) ∈ B
(0,
ε
α1/2
)C})
≤ ν
({x ∈ H : max
{∣∣(x,ei j
)∣∣}> ε√
mα1/2
})This is no larger than
1(√2π)m
∫|t1|> ε√
m√
α
∫|t2|> ε√
m√
α
· · ·∫|tm|> ε√
m√
α
e−|t|2/2dtm · · ·dt1
=
2∫
∞
ε/(√
mα1/2) e−t2/2dt√
2π
m
which by Jensen’s inequality is no larger than
2∫
∞
ε/(√
mα1/2) e−mt2/2dt√
2π=
2 1√m
∫∞
ε/(α1/2) e−t2/2dt√
2π
≤2∫
∞
ε/(ε/r) e−t2/2dt√
2π
=2∫
∞
r e−t2/2dt√2π
< ε
By 61.9.42. This proves the lemma.