62.11. HITTING THIS BEFORE THAT 2109
It follows
aP([τa = τb]∩ [M∗ > 0])+aP([τa < τb])+bP([τb < τa])≤
0≤ bP([τa = τb]∩ [M∗ > 0])+aP([τa < τb])+bP([τb < τa]) (62.11.43)
Note that [τb < τa] , [τa < τb]⊆ [M∗ > 0] and so
[τb < τa]∪ [τa < τb]∪ ([τa = τb]∩ [M∗ > 0]) = [M∗ > 0] (62.11.44)
The following diagram may help in keeping track of the various substitutions.
[τa < τb] [τb < τa] [τb = τa]∩ [M∗ > 0]
[M∗ > 0]
Left side of 62.11.43
From 62.11.44, this yields on substituting for P([τa < τb])
0 ≥ aP([τa = τb]∩ [M∗ > 0])+a [P([M∗ > 0])−P([τa ≥ τb]∩ [M∗ > 0])]+bP([τb < τa])
and so since [τa ̸= τb]⊆ [M∗ > 0] ,
0≥ a [P([M∗ > 0])−P([τa > τb])]+bP([τb < τa])
−aP([M∗ > 0])≥ (b−a)P([τb < τa]) (62.11.45)
Next use 62.11.44 to substitute for P([τb < τa])
0≥ aP([τa = τb]∩ [M∗ > 0])+aP([τa < τb])+bP([τb < τa])
= aP([τa = τb]∩ [M∗ > 0])+aP([τa < τb])
+b [P([M∗ > 0])−P([τa ≤ τb]∩ [M∗ > 0])]
= aP([τa ≤ τb]∩ [M∗ > 0])+b [P([M∗ > 0])−P([τa ≤ τb]∩ [M∗ > 0])]
and so(b−a)P([τa ≤ τb])≥ bP([M∗ > 0]) (62.11.46)
Right side of 62.11.43
From 62.11.44, used to substitute for P([τa < τb]) this yields
0≤ bP([τa = τb]∩ [M∗ > 0])+aP([τa < τb])+bP([τb < τa])
= bP([τa = τb]∩ [M∗ > 0])+a [P([M∗ > 0])−P([τa ≥ τb]∩ [M∗ > 0])]+bP([τb < τa])