2152 CHAPTER 63. THE QUADRATIC VARIATION OF A MARTINGALE

Lemma 63.7.3 Let a stochastic process, {An} be natural. Then for every martingale,{Mn} ,

E (MnAn) = E

(n−1

∑j=1

M j(A j+1−A j

))

Proof: Start with the right side.

E

(n−1

∑j=1

M j(A j+1−A j

))= E

(n

∑j=2

M j−1A j−n−1

∑j=1

M jA j

)

= E

(n−1

∑j=2

A j(M j−1−M j

))+E (Mn−1An)

Then the first term equals zero because since A j is F j−1 measurable,∫Ω

A jM j−1dP−∫

A jM j =∫

A jE(M j|F j−1

)dP−

∫Ω

A jM jdP

=∫

E(A jM j|F j−1

)dP−

∫Ω

A jM jdP

=∫

A jM jdP−∫

A jM jdP = 0.

The last term equals∫Ω

Mn−1AndP =∫

E (Mn|Fn−1)AndP

=∫

E (MnAn|Fn−1)dP = E (MnAn) .

This proves the lemma.

Definition 63.7.4 Let A be an increasing function defined on R. By Theorem 4.3.4 on Page50 there exists a positive linear functional, L defined on Cc (R) given by

L f ≡∫ b

af dA where spt( f )⊆ [a,b]

where the integral is just the Riemann Stieltjes integral. Then by the Riesz representationtheorem, Theorem 12.3.2 on Page 288, there exists a unique Radon measure, µ whichextends this functional, as described in the Riesz representation theorem. Then for B ameasurable set, I will write either ∫

Bf dµ or

∫B

f dA

to denote the Lebesgue integral, ∫XB f dµ.

2152 CHAPTER 63. THE QUADRATIC VARIATION OF A MARTINGALELemma 63.7.3 Let a stochastic process, {An} be natural. Then for every martingale,{Mn},E(MnAn) =E (Eu (Ajvt 0)Proof: Start with the right side.E (x Mj (Aj+1 -4))n n—1E| ¥)Mj-1A;— YMA;j=2 j=ln—1= E yi A; (Mj-1 —Mj;) ]| +E(My-1An)j=2Then the first term equals zero because since A; is #;-; measurable,A;M;_ ap— | AM = [AE M,|.F;—- dp— | ajMjaP[am oo td AIE (Mil Fi-1) ao! != [eam F-a)aP— | ajmjarQ Q .= AjM,dP— | AjMjdP=0.I jee j oe fdThe last term equals| My-1AndP = | E (My|-Fn—1) And PQ Q= | EWuAn| Fn) dP = E (MyAn)-QThis proves the lemma.Definition 63.7.4 Let A be an increasing function defined on R. By Theorem 4.3.4 on Page50 there exists a positive linear functional, L defined on C, (R) given byLf= [sas where spt(f) © [a,b]where the integral is just the Riemann Stieltjes integral. Then by the Riesz representationtheorem, Theorem 12.3.2 on Page 288, there exists a unique Radon measure, whichextends this functional, as described in the Riesz representation theorem. Then for B ameasurable set, I will write either[fan or [faato denote the Lebesgue integral,| %efau.