2152 CHAPTER 63. THE QUADRATIC VARIATION OF A MARTINGALE
Lemma 63.7.3 Let a stochastic process, {An} be natural. Then for every martingale,{Mn} ,
E (MnAn) = E
(n−1
∑j=1
M j(A j+1−A j
))
Proof: Start with the right side.
E
(n−1
∑j=1
M j(A j+1−A j
))= E
(n
∑j=2
M j−1A j−n−1
∑j=1
M jA j
)
= E
(n−1
∑j=2
A j(M j−1−M j
))+E (Mn−1An)
Then the first term equals zero because since A j is F j−1 measurable,∫Ω
A jM j−1dP−∫
Ω
A jM j =∫
Ω
A jE(M j|F j−1
)dP−
∫Ω
A jM jdP
=∫
Ω
E(A jM j|F j−1
)dP−
∫Ω
A jM jdP
=∫
Ω
A jM jdP−∫
Ω
A jM jdP = 0.
The last term equals∫Ω
Mn−1AndP =∫
Ω
E (Mn|Fn−1)AndP
=∫
Ω
E (MnAn|Fn−1)dP = E (MnAn) .
This proves the lemma.
Definition 63.7.4 Let A be an increasing function defined on R. By Theorem 4.3.4 on Page50 there exists a positive linear functional, L defined on Cc (R) given by
L f ≡∫ b
af dA where spt( f )⊆ [a,b]
where the integral is just the Riemann Stieltjes integral. Then by the Riesz representationtheorem, Theorem 12.3.2 on Page 288, there exists a unique Radon measure, µ whichextends this functional, as described in the Riesz representation theorem. Then for B ameasurable set, I will write either ∫
Bf dµ or
∫B
f dA
to denote the Lebesgue integral, ∫XB f dµ.