63.8. LEVY’S THEOREM 2173

By the optional stopping theorem,{

X (τε ∧ t j)}

j is a martingale as is also{X (τε ∧ t j)− τε ∧ t j

}j .

Thus for A ∈Fτε∧t j−1 ,∫A

E(

y2j |Fτε∧t j−1

)dP =

∫A

E((

X (τε ∧ t j)−X(τε ∧ t j−1

))2 |Fτε∧t j−1

)dP

=∫

AE(

X (τε ∧ t j)2 |Fτε∧t j−1

)+X

(τε ∧ t j−1

)2

−2X(τε ∧ t j−1

)E(

X (τε ∧ t j) |Fτε∧t j−1

)dP

=∫

AE(

X (τε ∧ t j)2− τε ∧ t j|Fτε∧t j−1

)dP+

∫A

E(

τε ∧ t j|Fτε∧t j−1

)dP

+∫

AX(τε ∧ t j−1

)2 dP−2∫

AX(τε ∧ t j−1

)2 dP

=∫

AX(τε ∧ t j−1

)2 dP−∫

Aτε ∧ t j−1dP+

∫A

E(

τε ∧ t j|Fτε∧t j−1

)dP

+∫

AX(τε ∧ t j−1

)2 dP−2∫

AX(τε ∧ t j−1

)2 dP

=∫

AE(

τε ∧ t j|Fτε∧t j−1

)dP−

∫A

τε ∧ t j−1dP

=∫

A

(τε ∧ t j− τε ∧ t j−1

)dP≤

∫A

t j− t j−1dP.

Thus, since A is arbitrary,

σ2j ≡

∫A

E(

y2j |Fτε∧t j−1

)dP =

E((

X (τε ∧ t j)−X(τε ∧ t j−1

))2 |Fτε∧t j−1

)≤ t j− t j−1 = δ n(ε) (63.8.44)

Also,

E(

y j|Fτε∧t j−1

)= E

(X (τε ∧ t j)−X

(τε ∧ t j−1

)|Fτε∧t j−1

)= 0. (63.8.45)

Now it is time to find E(

eiλX(τε∧t j))

.

E(

eiλX(τε∧t j))= E

(eiλ(X(τε∧t j−1)+y j)

)= E

(eiλX(τε∧t j−1)E

(eiλy j |Fτε∧t j−1

)). (63.8.46)

63.8. LEVY’S THEOREM 2173By the optional stopping theorem, {X (Te Atj) fj is a martingale as is alsoThus for A € Frnt;[E (Freya) aP= |B ((X (teres) —X (te Atj-1))? |Feenns 1) AP_ [EB (X (ent Feary) +X (tea)-2K (te Aty-1) E (X (te ty) |Feenny 1) AP= [ E(X(ceA1))— te At Feeay)4P+ | E (te \ti| Front; 1) aP+ [x (enta)dP—2 [x (teAtj-1)°aPA A A+ |X (tentja)dP-2 |X (tent) aPA A[E(t til Foon) 1) a? | teNt-aPA , AJ ent tentjr dP < | 1)—14.-1dP,A , AThus, since A is arbitrary,2 2Oj = |B (vil Fens) dP =E((X (te Ati) =X (te t-1))” |Feenty 1) Stitt = Se) (63.8.44)Also,E (vil Fronts) =E (x (Te Atj) —X (Te Atj-1) |Feens1) —0. (63.8.45)Now it is time to find E (e** (*e1))),E (c@*("4))) —f (ci*(X(¢er5-1)99))_E (ci (em Ve (e |Feenty-1 )) , (63.8.46)