2230 CHAPTER 65. STOCHASTIC INTEGRATION

which converges in L2 (Ω;H) and pointwise to g.Then∫A(E ( f |G ) ,g)H dP = lim

n→∞

∫A(E ( f |G ) ,gn)H dP

= limn→∞

∫A

mn

∑k=1

(E ( f |G ) ,an

kXEnk

)H

dP = limn→∞

∫A

mn

∑k=1

E(( f ,an

k)H |G)XEn

kdP

= limn→∞

∫A

mn

∑k=1

E((

f ,ankXEn

k

)H|G)

dP = limn→∞

∫A

E

((f ,

mn

∑k=1

ankXEn

k

)H

|G

)dP

= limn→∞

∫A

E (( f ,gn)H |G )dP = limn→∞

∫A( f ,gn)H dP =

∫A( f ,g)H dP

which shows(E ( f |G ) ,g)H = E (( f ,g)H |G )

as claimed.Consider the other claim. Let

Φn (ω) =mn

∑k=1

ΦnkXEn

k(ω) , En

k ∈ G

where Φnk ∈L (U,H) be such that Φn converges to Φ pointwise in L (U,H) and also∫

||Φn−Φ||2 dP→ 0.

Then letting A ∈ G and using Corollary 21.2.6 as needed,∫A

ΦE ( f |G )dP

= limn→∞

∫A

ΦnE ( f |G )dP = limn→∞

∫A

mn

∑k=1

ΦnkE ( f |G )XEn

kdP

= limn→∞

mn

∑k=1

Φnk

∫A

E ( f |G )XEnkdP = lim

n→∞

mn

∑k=1

Φnk

∫A

E(XEn

kf |G)

dP

= limn→∞

mn

∑k=1

Φnk

∫AXEn

kf dP = lim

n→∞

∫A

mn

∑k=1

ΦnkXEn

kf dP

= limn→∞

∫A

Φn f dP = limn→∞

∫A

Φ f dP≡∫

AE (Φ f |G )dP

Since A ∈ G is arbitrary, this proves the lemma.

Lemma 65.1.4 Let J : U0→U be a Hilbert Schmidt operator and let W (t) be the resultingWiener process

W (t) =∞

∑k=1

ψk (t)Jgk

2230 CHAPTER 65. STOCHASTIC INTEGRATIONwhich converges in L? (Q;H) and pointwise to g.Then[EU19).8)n4P = jim | (EN) 80) APmm mmlim a (E (f|9) sa Xen) dP = lim LE (feu l9) Zarn—soo n—yoomnlim LE ( (ha ait) 16) a= im fe((1 Zar) i) dP= fim | E((f.8m)y(9)aP = him | (Fen)? = | (f.8)ndPn—oowhich shows(E(fIF) 8) =£((F.8) HIF)as claimed.Consider the other claim. Letmn®, (@) = LM 7n (@), ELEYwhere ®! € Y (U,H) be such that ®, converges to ® pointwise in @ (U,H) and also| |, — ||" dP > 0.QThen letting A € Y and using Corollary 21.2.6 as needed,| BE (f|Y)aPmn— lim | ©, E (f|Y)dP = lim [ » BLE (FY) Rig Pmn mn_ fee (f|9) 2igaP = tim mda he (2ins\) aneok=1noo= lim [| nfaP = r= in [oars [ e(opayarneo JA ASince A € is arbitrary, this proves the lemma. JjLemma 65.1.4 Let J: Up > U be a Hilbert Schmidt operator and let W (t) be the resultingWiener process~ LV t) J 8x