2248 CHAPTER 65. STOCHASTIC INTEGRATION

Proof: First note that(∫ t

aΦdW,

∫ t

aΨdW

)H=

14

[∣∣∣∣∫ t

a(Φ+Ψ)dW

∣∣∣∣2H−∣∣∣∣∫ t

a(Φ−Ψ)dW

∣∣∣∣2H

]

and so from the above theorem,

E((∫ t

aΦdW,

∫ t

aΨdW

)H

)=

= E

(14

[∣∣∣∣∫ t

a(Φ+Ψ)dW

∣∣∣∣2H−∣∣∣∣∫ t

a(Φ−Ψ)dW

∣∣∣∣2H

])14

E(∫ t

a||Φ+Ψ||2

L2(Q1/2U,H) ds)+

14

E(∫ t

a||Φ−Ψ||2

L2(Q1/2U,H) ds)

= E(∫ t

a

14

[||Φ+Ψ||2

L2(Q1/2U,H) + ||Φ−Ψ||2L2(Q1/2U,H)

]ds)

= E(∫ t

a(Φ,Ψ)L2(Q1/2U,H) ds

).

Now consider the last claim. First suppose L = lXA where A ∈Fa, and l ∈L (H,H).Also suppose Φ is an elementary function

Φ =n

∑i=0

ψ iX(si,si+1]

Then

L∫ t

aΦdW = lXA

n

∑i=0

ψ i (W (t ∧ si+1)−W (t ∧ si))

=n

∑i=0

lXAψ i (W (t ∧ si+1)−W (t ∧ si))

Thus 65.5.13 also holds for L a simple function which is Fa measurable. For generalL ∈ L∞ (Ω,L (H,H)) , approximating with a sequence of such simple functions Ln yields

L∫ t

aΦdW = lim

n→∞Ln

∫ t

aΦdW = lim

n→∞

∫ t

aLnΦdW =

∫ t

aLΦdW

because LnΦ→ LΦ in L2([a,T ]×Ω;L2

(Q1/2U,H

)). Now what about general Φ? Let

{Φn} be elementary functions converging to Φ ◦ J−1 in L2([a,T ]×Ω;L2

(JQ1/2U,H

)).

Then by definition of the integral,

L∫ t

aΦdW = lim

n→∞L∫ t

aΦndW = lim

n→∞

∫ t

aLΦndW =

∫ t

aLΦdW

2248 CHAPTER 65. STOCHASTIC INTEGRATION/Proof: First note thatt t 1(/ aw, | vaw) =a a q 4and so from the above theorem,(sm [0"),)-“( )21 t 2 1 t 2qe [le+¥leacovrwan 4s +e [Ne ¥acovrvan 4s2[eran[@-»aw[eran[@-aw‘1 2 2° (/ 7 P+ Fla (ou20,) +P FllZa(u204)| is)_ Ff (/' (©) s(oueu.n) as) .Now consider the last claim. First suppose L = 1.24 where A € ¥,, andl € Y (H,#A).Also suppose ® is an elementary functione= DV sisieThent nL | @dW = 12AY Vy; (W(t Asin) —W(tAsi))a i=0_ YI ZaW;(W (tA sic) —W (tsi)i=0Thus 65.5.13 also holds for L a simple function which is .%, measurable. For generalLEL” (Q,£(H,A)), approximating with a sequence of such simple functions L,, yieldst t t tL | dW = limL, | &aw = lim | LybdW = | Le@dwa n—yoo a no J gq Pbecause L,® —> L® in L? ([a,T| x Q;.% (0'/?U,H)). Now what about general ©? Let{®,} be elementary functions converging to ®oJ~! in L? ({a,T] x Q;-4 (JQ"/?U,H)).Then by definition of the integral,t t t tL | @dW =limL | &,dW = lim | L®,dW = | Lo&dwa a ano Jaq n—yoo