65.14. A TECHNICAL INTEGRATION BY PARTS RESULT 2265
Now let {gi} be an orthonormal basis for Q1/2U, so it follows that {Jgi} is an orthonormalbasis for JQ1/2U. Then
∑i
∣∣∣R(Z∗nX (a)−(Z ◦ J−1)∗X (a)
)(Jgi)
∣∣∣2
≡∑i
∣∣∣∣(Z∗nX (a)−(Z ◦ J−1)∗X (a) ,Jgi
)U1
∣∣∣∣2 = ∑i
∣∣(X (a) ,(Zn−Z ◦ J−1)Jgi
)H
∣∣2≤∑
i|X (a)|2H
∣∣(Zn−Z ◦ J−1)Jgi∣∣2H = |X (a)|2H
∥∥Zn−Z ◦ J−1∥∥2L2(JQ1/2U,H)
When integrated over [a,b]×Ω, it is given that this converges to 0. This has shown that
R (Z∗nX (a))→R((
Z ◦ J−1)∗X (a))
in L2(JQ1/2U,R
). In other words
R (Z∗nX (a))→(R((
Z ◦ J−1)∗X (a))◦ J)◦ J−1
It follows that (∫ t
aZ (u)dW,X (a)
)H=∫ t
aR((
Z ◦ J−1)∗X (a))◦ JdW
From localization,(∫ b∧τnp
a∧τnp
Z (u)dW,X (a)
)H
=
(∫ b
aX[0,τn
p]Z (u)dW,X (a)
)H
=∫ b
aX[0,τn
p]R((
Z ◦ J−1)∗X (a))◦ JdW
=∫ b∧τn
p
a∧τnp
R((
Z ◦ J−1)∗X (a))◦ JdW
Then it follows that, using the stopping time,
m−1
∑j=0
(∫ tnj+1∧τn
p∧t
tnj∧τn
p∧tZ (u)dW,X
(tn
j))
H
=m−1
∑j=0
∫ tnj+1∧τn
p∧t
tnj∧τn
p∧tR((
Z ◦ J−1)∗Xn(tn
j))◦ JdW
=∫ tn
m∧τnp∧t
0R((
Z ◦ J−1)∗(X ln
))◦ JdW
where X ln is the step function
X ln (t)≡
mn−1
∑k=0
X (tnk )X[tn
k ,tnk+1)
(t)