2290 CHAPTER 67. THE EASY ITO FORMULA

Lemma 67.2.1 Suppose η j are real random variables E(

η2j

)< ∞, such that ηk is mea-

surable with respect to G j for all j > k where {Gk} is increasing. Then

E

[m−1

∑k=0

ηk−m−1

∑k=0

E (ηk|Gk)

]2 (67.2.2)

= E

(m−1

∑k=0

η2k−E (ηk|Gk)

2

)

Proof: First consider a mixed term i < k.

E ((η i−E (η i|Gi))(ηk−E (ηk|Gk)))

This equals

E (η iηk)−E (η iE (ηk|Gk))−E (ηkE (η i|Gi))+E (E (η i|Gi)E (ηk|Gk))

= E (η iηk)−E (E (η iηk|Gk))−E (ηkE (η i|Gi))+E (E (ηkE (η i|Gi) |Gk))

= E (η iηk)−E (E (η iηk|Gk))−E (ηkE (η i|Gi))+E (ηkE (η i|Gi))

= E (η iηk)−E (η iηk)−E (ηkE (η i|Gi))+E (ηkE (η i|Gi)) = 0

Thus 67.2.2 equalsm−1

∑k=0

E((ηk−E (ηk|Gk))

2)

which equals

m−1

∑k=0

E(η

2k)−2E (ηkE (ηk|Gk))+E

(E (ηk|Gk)

2)

=m−1

∑k=0

E(η

2k)−2E (E (ηkE (ηk|Gk)) |Gk)+E

(E (ηk|Gk)

2)

=m−1

∑k=0

E(η

2k)−2E (E (ηk|Gk)E (ηk|Gk))+E

(E (ηk|Gk)

2)

=m−1

∑k=0

E(η

2k)−2E

(E (ηk|Gk)

2)+E

(E (ηk|Gk)

2)

=m−1

∑k=0

E(η

2k)−E

(E (ηk|Gk)

2)

2290 CHAPTER 67. THE EASY ITO FORMULALemma 67.2.1 Suppose 1 ; are real random variables E (n7) < co, such that Nj, is mea-surable with respect to G; for all j > k where {%} is increasing. Then‘(2m—|-8 (Ente (n|%) ’)m—1y Nh py E(n|%) | } (67.2.2)Proof: First consider a mixed term i < k.E((n;-E(nil%)) (Me -E (Me I%)))This equalsE (nine) —E (ME (el&)) —E (ME (Mi1%)) +E (E (1%) E (Ml %))=E (ning) —E(E(ninel%)) —E (mE (ni|%)) + E(E (ME (ni%) |%))=E (ning) —E(E (ninel&)) —E (ME (0%) +E (NE (n%))=E(ning) —E (ning) —E (ME (ni |%)) +E (NE (nl%)) =Thus 67.2.2 equalsFe(\ Ne -E(NiI%)) *)which equalsm—1YE (ni) ~2E (mae (mul) +E (E(mulH)”)= Fel me) —2E(E (nu (mel%)) |%) +E (E (nul%)”)- Eel me) ~ 2 (E (nal) E (Mal %)) +E (E (Mul%)”)m—1- Le (ni) —2E (E(nl%)’) +E (E(nl%)’)= Ye(ni)-£(e(nl%") 4k=0