2330 CHAPTER 68. A DIFFERENT KIND OF STOCHASTIC INTEGRATION

hence if W (Ai∩B j) ̸= 0, then, since these sets are disjoint, ci−d j = 0. It follows that

∑i, j(ci−d j)W (Ai∩B j) = 0

and so

∑i

ciW (Ai) = ∑i

∑j

ciW (Ai∩B j) = ∑j∑

id jW (Ai∩B j) = ∑

jd jW (B j)

This proves the theorem if n = 1. Consider the general case. Let i′ be

(i1, · · · , in−1) , ik ≤ mm

∑in=1

∑i′

c(i′,in)XAin(tn)XAi1×···×Ain−1

= ∑i

ciXAi1×···×Ain

= ∑j

djXB j1×···×B jn=

m

∑jn=1

∑j′

d(j′, jn)XB jn(tn)XB j1×···×B jn−1

Now pick (t1, · · · , tn−1) . The above is then

m

∑in=1

(∑i′

c(i′,in)XAi1×···×Ain−1(t1, · · · , tn−1)

)XAin

(tn)

=m

∑jn=1

(∑j′

d(j′, jn)XB j1×···×B jn−1(t1, · · · , tn−1)

)XB jn

(tn)

and by what was just shown for n = 1, for each such choice,

∑in

(∑i′

c(i′,in)XAi1×···×Ain−1

)W (Ain)

= ∑jn

(∑j′

d(j′, jn)XB j1×···×B jn−1

)W (B jn)

Then

∑i′

function of ω︷ ︸︸ ︷

∑in

W (Ain)c(i′,in)

 not a function of ω︷ ︸︸ ︷XAi1×···×Ain−1

=

∑j′

(∑jn

W (B jn)d(j′, jn)

)XB j1×···×B jn−1

Pick ω = ω0. Then by induction,

∑i′

(∑in

W (Ain)(ω0)c(i′,in)

)W (Ai1) · · ·W

(Ain−1

)= ∑

j′

(∑jn

W (B jn)(ω0)d(j′, jn)

)W (B j1) · · ·W

(B jn−1

)

2330 CHAPTER 68. A DIFFERENT KIND OF STOCHASTIC INTEGRATIONhence if W (A;N Bj) # 0, then, since these sets are disjoint, c; —d; = 0. It follows that¥ (cia) W (4i9Bj) =0ijand soYW (Ai) = VY iW (4:0 By) = YY dW (Ai Bj) = YW (B;)i ij ji JThis proves the theorem if n = 1. Consider the general case. Let i’ be(ij,+°- sin-1) stk <mmy V car in) ZA, (tn) XA, Xi XA = Va%,, XX XAjnin=l i im= V4 2B; XX Bin = » YG in) 2B;, (tn) 2B, XX Bisj jn=1 j!Now pick (t1,--- ,tn-1). The above is theny (Ese in) ) ai, x: XA; 4 (t,--: +) Xa, (tn)in=l= y (Eau i/.in) 2B; yx xBj, sete) 2B,, (tn)jn=1and by what was just shown for n = 1, for each such choice,y (Fant ctu) Ww (Ai, )iin=) (Eas i) )2B;, 4.) W (Bj,)jnThenfunction of @ not a function of @Fwanews ayw in) Ci! sin) ZA, XX AG =i/y (Evia in) Jn) } 2B, x XBiJPick @ = @p. Then by induction,y (Ew (Ai, ) (orn W (Ai, )---W (Ai,_,)= ¥ (EM in) (@o0) diy 3p) WB) Bi)ij Jnin