2346 CHAPTER 68. A DIFFERENT KIND OF STOCHASTIC INTEGRATION
Thus E(
δ (u)2)=
m
∑j,k=1
E(δ(F̂jh j
)δ(F̂khk
))=
m
∑j,k=1
E(〈
D(δ(F̂jh j
)),(F̂khk
)〉)m
∑j,k=1
E(〈
F̂jh j +W (h j)D(F̂j)−D
〈DF̂j,h j
〉,(F̂khk
)〉)Separating out the first term this is
= E
(m
∑k=1
∥∥F̂k∥∥2
)+∑
k,kE(〈
W (h j)D(F̂j), F̂khk
〉)−∑
j,kE(Dk(D jF̂j
)Fk)
= E
(m
∑k=1
∥∥F̂k∥∥2
)+∑
k,kE(〈
W (h j)D(F̂j), F̂khk
〉)−∑
j,kE(Dk(D jF̂j
)F̂k)
= E
(m
∑k=1
∥∥F̂k∥∥2
)+∑
k,kE(W (h j)Dk
(F̂j)
F̂k)
−∑j,k
E(Dk(D jF̂j
)F̂k)
(68.4.24)
By equality of mixed partial derivatives, the third term equals
−∑j,k
E(D j(DkF̂j
)F̂k)= ∑
j,kE((
DkF̂j)(
D jF̂k))−∑
j,kE(Dk(F̂j)
F̂kW (h j))
Therefore, 68.4.24 reduces to
E
δ
(m
∑j=1
Fjh j
)2 = E
(m
∑k=1
∥∥F̂k∥∥2
H
)+
m
∑j,k=1
E((
DkF̂j)(
D jF̂k))
= E
(m
∑k=1
∥∥F̂k∥∥2
H
)+
m
∑j,k=1
E(〈
DF̂j,hk〉〈
DF̂k,h j〉)
= E
(m
∑k=1∥Fk∥2
H
)+
m
∑j,k=1
E(〈
DFj,hk〉〈
DFk,h j〉)
because the derivative is well defined. All of this assumes the hk form an orthonormal set.Suppose these are just orthogonal but nonzero. Then
E
δ
(m
∑j=1
Fjh j
)2= E
( m
∑j=1
δ (Fjh j)
)2= E
(∑j,k
δ (Fjh j)δ (Fkhk)
)