2370 CHAPTER 69. GELFAND TRIPLES

Lemma 69.3.3 Let s < t. Then for X ,Y satisfying 69.3.15

|X (t)|2 = |X (s)|2 +2∫ t

s⟨Y (u) ,X (t)⟩du−|X (t)−X (s)|2 (69.3.16)

Proof: It follows from the following computations

X (t)−X (s) =∫ t

sY (u)du

−|X (t)−X (s)|2 =−|X (t)|2 +2(X (t) ,X (s))−|X (s)|2

= −|X (t)|2 +2(

X (t) ,X (t)−∫ t

sY (u)du

)−|X (s)|2

= −|X (t)|2 +2 |X (t)|2−2⟨∫ t

sY (u)du,X (t)

⟩−|X (s)|2

Hence|X (t)|2 = |X (s)|2 +2

∫ t

s⟨Y (u) ,X (t)⟩du−|X (t)−X (s)|2

Lemma 69.3.4 In the above situation,

supt∈[0,T ]

|X (t)|H ≤C (∥Y∥K′ ,∥X∥K)

Also, t→ X (t) is weakly continuous with values in H.

Proof: From the above formula applied to the kth partition of [0,T ] described above,

|X (tm)|2−|X0|2 =m−1

∑j=0

∣∣X (t j+1)∣∣2− ∣∣X (t j)

∣∣2

=m−1

∑j=0

2∫ t j+1

t j

⟨Y (u) ,X

(t j+1

)⟩du−

∣∣X (t j+1)−X (t j)

∣∣2H

=m−1

∑j=0

2∫ t j+1

t j

⟨Y (u) ,X rk (u)⟩du−

∣∣X (t j+1)−X (t j)

∣∣2H

Thus, discarding the negative terms and denoting by Pk the kth of these partitions,

supt j∈Pk

∣∣X (t j)∣∣2H ≤ |X0|2 +2

∫ T

0|⟨Y (u) ,X r

k (u)⟩|du

≤ |X0|2 +2∫ T

0∥Y (u)∥V ′ ∥X

rk (u)∥V du

2370 CHAPTER 69. GELFAND TRIPLESLemma 69.3.3 Let s <t. Then for X,Y satisfying 69.3.15XP = (+2 [WX du [XO -X(o)P (69.3.16)Proof: It follows from the following computationsX(t) —X(s) = [vw au—|X (1) =X (8)? == |X (D/P +2(X (),X (5) = 1X (8)?= —|x(1)| *42(x0), [rw (wa) - IX (5)?- “nupp-axna(frtoute)-obrHence2KOP= KP +2 [OW W).XO)du-[KQ-X()PLemma 69.3.4 In the above situation,sup |X (t)ly SC (I lars IXIlx)t€(0,7]Also, t + X (t) is weakly continuous with values in H.Proof: From the above formula applied to the k” partition of [0,7] described above,m—1IX (tm)[? — |Xol = YF |X (ty41) P — |X (A)?j=0m—1-¥ 2 [ (¥ (uw) .X (t41))du—|X (ty41) —X (4) [5j=o 74mal pti= Y2/ WW).xf)du= |X (a) -X Dlj=0 “47Thus, discarding the negative terms and denoting by Y the k’" of these partitions,T2 2sup |X (t)|7, < |Xol +2/ |(¥ (u) Xx (u))|dutje Py 0T<|Xol?+2 [IY Cw) IE (w)lly du