2388 CHAPTER 69. GELFAND TRIPLES

and ||u||Lp([a,b];E) ≤ R}.

Thus S is bounded in Lp ([a,b] ;E) and Holder continuous into X. Then S is precompact inLp ([a,b] ;W ). This means that if {un}∞

n=1 ⊆ S, it has a subsequence{

unk

}which converges

in Lp ([a,b] ;W ) .

Proof: By Proposition 7.6.5 on Page 144 it suffices to show that S has an η net inLp ([a,b] ;W ) for each η > 0.

If not, there exists η > 0 and a sequence {un} ⊆ S, such that

||un−um|| ≥ η (69.5.29)

for all n ̸= m and the norm refers to Lp ([a,b] ;W ). Let

a = t0 < t1 < · · ·< tk = b, ti− ti−1 = (b−a)/k.

Now define

un (t)≡k

∑i=1

uniX[ti−1,ti) (t) , uni ≡1

ti− ti−1

∫ ti

ti−1

un (s)ds.

The idea is to show that un approximates un well and then to argue that a subsequence ofthe {un} is a Cauchy sequence yielding a contradiction to 69.5.29.

Therefore,

un (t)−un (t) =k

∑i=1

un (t)X[ti−1,ti) (t)−k

∑i=1

uniX[ti−1,ti) (t)

=k

∑i=1

1ti− ti−1

∫ ti

ti−1

un (t)dsX[ti−1,ti) (t)−k

∑i=1

1ti− ti−1

∫ ti

ti−1

un (s)dsX[ti−1,ti) (t)

=k

∑i=1

1ti− ti−1

∫ ti

ti−1

(un (t)−un (s))dsX[ti−1,ti) (t) .

It follows from Jensen’s inequality that

||un (t)−un (t)||pW

=k

∑i=1

∣∣∣∣∣∣∣∣ 1ti− ti−1

∫ ti

ti−1

(un (t)−un (s))ds∣∣∣∣∣∣∣∣p

WX[ti−1,ti) (t)

≤k

∑i=1

1ti− ti−1

∫ ti

ti−1

||un (t)−un (s)||pW dsX[ti−1,ti) (t)

and so ∫ b

a||(un (t)−un (s))||pW ds

≤∫ b

a

k

∑i=1

1ti− ti−1

∫ ti

ti−1

||un (t)−un (s)||pW dsX[ti−1,ti) (t)dt

=k

∑i=1

1ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

||un (t)−un (s)||pW dsdt. (69.5.30)

2388 CHAPTER 69. GELFAND TRIPLESand ||t\|1>(\a,b):2) < RPThus S is bounded in L? ({a,b|;E) and Holder continuous into X. Then S is precompact inLP ([a,b];W). This means that if {un }*_, CS, it has a subsequence { un, } which convergesin LP (Ja,b];W).Proof: By Proposition 7.6.5 on Page 144 it suffices to show that S has an 7) net inL? ([a,b];W) for each n > 0.If not, there exists 7 > 0 and a sequence {u,} C S, such that||un —Um|| 27 (69.5.29)for all n ¢ m and the norm refers to L? ([a,b] ;W). Leta=t9 <th<-++ <=), t;-t-1 = (b—a) /k.Now definek ._ _ _ 1 fj(t)= Yin; Kits) (t), Un, = a | un (s)ds.i=l i fi-i-]The idea is to show that %, approximates u,, well and then to argue that a subsequence ofthe {m7} is a Cauchy sequence yielding a contradiction to 69.5.29.Therefore,k kUn = hem Bit ti) ) (t) _ Yin nai) (¢)i=1Ye | mb0)dsFin pyi=] _tj[mds ig say 01k~ he = tf (utp (t) — tn (8) ds Bina (t)-i=1It follows from Jensen’s inequality that||e¢n (t) =n (2) Ihk 1 t;_ »? a [Flom 0) mm (s)) dska [lite ee br dF a9 (0i=] ETPRit ti) (t)WwIAand so[iioun 0) —tn (9) Iabki bi = r “ee (0) ea Sr dH ay (Dak t;y —[ [ ||Un (t) — Un (s)||fy dsdt. (69.5.30)tj —tj-1 ty, J ti-1i=lIA