2388 CHAPTER 69. GELFAND TRIPLES
and ||u||Lp([a,b];E) ≤ R}.
Thus S is bounded in Lp ([a,b] ;E) and Holder continuous into X. Then S is precompact inLp ([a,b] ;W ). This means that if {un}∞
n=1 ⊆ S, it has a subsequence{
unk
}which converges
in Lp ([a,b] ;W ) .
Proof: By Proposition 7.6.5 on Page 144 it suffices to show that S has an η net inLp ([a,b] ;W ) for each η > 0.
If not, there exists η > 0 and a sequence {un} ⊆ S, such that
||un−um|| ≥ η (69.5.29)
for all n ̸= m and the norm refers to Lp ([a,b] ;W ). Let
a = t0 < t1 < · · ·< tk = b, ti− ti−1 = (b−a)/k.
Now define
un (t)≡k
∑i=1
uniX[ti−1,ti) (t) , uni ≡1
ti− ti−1
∫ ti
ti−1
un (s)ds.
The idea is to show that un approximates un well and then to argue that a subsequence ofthe {un} is a Cauchy sequence yielding a contradiction to 69.5.29.
Therefore,
un (t)−un (t) =k
∑i=1
un (t)X[ti−1,ti) (t)−k
∑i=1
uniX[ti−1,ti) (t)
=k
∑i=1
1ti− ti−1
∫ ti
ti−1
un (t)dsX[ti−1,ti) (t)−k
∑i=1
1ti− ti−1
∫ ti
ti−1
un (s)dsX[ti−1,ti) (t)
=k
∑i=1
1ti− ti−1
∫ ti
ti−1
(un (t)−un (s))dsX[ti−1,ti) (t) .
It follows from Jensen’s inequality that
||un (t)−un (t)||pW
=k
∑i=1
∣∣∣∣∣∣∣∣ 1ti− ti−1
∫ ti
ti−1
(un (t)−un (s))ds∣∣∣∣∣∣∣∣p
WX[ti−1,ti) (t)
≤k
∑i=1
1ti− ti−1
∫ ti
ti−1
||un (t)−un (s)||pW dsX[ti−1,ti) (t)
and so ∫ b
a||(un (t)−un (s))||pW ds
≤∫ b
a
k
∑i=1
1ti− ti−1
∫ ti
ti−1
||un (t)−un (s)||pW dsX[ti−1,ti) (t)dt
=k
∑i=1
1ti− ti−1
∫ ti
ti−1
∫ ti
ti−1
||un (t)−un (s)||pW dsdt. (69.5.30)