2402 CHAPTER 70. MEASURABILITY WITHOUT UNIQUENESS

Proof: Let Pm denote the projection onto the closed ball B(0,9m). Then from the abovelemma, there exists a product measurable solution um to the integral equation

um (t,ω)−u0 (ω)+∫ t

0N(s,Pmum(s,ω),Pmum(s−h,ω),Pmwm (s,ω) ,ω)ds

=∫ t

0f(s,ω)ds.

Define a stopping time

τm(ω)≡ inf{

t ∈ [0,T ] : |um (t,ω)|2 + |wm (t,ω)|2 > 2m},

where inf /0≡ T . Localizing with the stopping time,

uτmm (t,ω)−u0 (ω)+

∫ t

0X[0,τm]N(s,uτm

m (s,ω),uτmm (s−h,ω),wτm

m (s,ω) ,ω)ds

=∫ t

0X[0,τm]f(s,ω)ds.

Note how the stopping time allowed the elimination of the projection map in the equation.Then we get

12|uτm

m (t,ω)|2− 12|u0(ω)|2

+∫ t

0

(X[0,τm]N(s,uτm

m (s,ω),uτmm (s−h,ω),wτm

m (s,ω) ,ω) ,uτmm (s,ω)

)ds

=∫ t

0X[0,τm] (f(s,ω) ,uτm

m (s,ω))ds.

From the estimate,

12|uτm

m (t,ω)|2− 12|u0(ω)|2 ≤

∫ t

0

(|uτm

m (s,ω)|2 + |uτmm (s−h,ω)|2 + |wτm

m (s,ω)|2)

+C (s,ω)+12|f(s,ω)|2

)ds+

12

∫ t

0|uτm

m (s,ω)|2 ds.

Note that|u0|2 h+

∫ t

0|uτn

n (s)|2 ds≥∫ t

0|uτn

n (s−h,ω)|2 ds

and ∫ t

0|wτn

n (s,ω)|2 ds =∫ t

0

∣∣∣∣w0 +∫ s

0X[0,τn]un (r)dr

∣∣∣∣2 ds

=∫ t

0

∣∣∣∣w0 +∫ s

0X[0,τn]u

τnn (r)dr

∣∣∣∣2 ds

≤C (w0 (ω))+CT∫ t

0|uτn

n |2 ds

2402 CHAPTER 70. MEASURABILITY WITHOUT UNIQUENESSProof: Let P,, denote the projection onto the closed ball B (0,9). Then from the abovelemma, there exists a product measurable solution u,, to the integral equationtUp, (1, ©) — Uy (@) + [ N(5,PnUn(5,@), Pty (5 —h, @),PnWy, (8,@) ,@) ds0t= | f(s,@) ds.0Define a stopping timeTn(@) =inf {1 E [0,7] : [Um (t,@)|? +|Wm (t,@)|° > an,where inf@ = 7. Localizing with the stopping time,tut" (1,@) — ug (@) + [ Zo.ay\N (5, 8" (s, 0),u2" (s—h, @), we" (s, 0) ,00) dst= | Pocnif(s.00) a.J0 ‘Note how the stopping time allowed the elimination of the projection map in the equation.Then we get1 Tm 2 Jl 22 lu, (t,@)| 2 |u(@)|t+f (270,r,)N (s,s (8, @), uy” (s—h, ©), wy" (s,@) ,) ,wy”"(s,@)) dsR ;t=f Zo.eq\(E(s.00) 3s, 00)) dsFrom the estimate,Ltn 21 2 . Tm 2 Tm 2 Tm 25 lst (ts 00)|? — 5 |o(eo)|” < [ (w (|e. 00)? + mg (s — ©)? + [wa (s,00)/?)1 1 ft4€(s.0)+ 5 [t(,0)?)) ds+; | juz” (s,@)|" ds.0Note that : :luo? A+ f jut" (s)Pds> | ju?" (s—h,)2ds0 0andt 5 t s 2[ wie (s,@)|'ds = i wo+ | Kio.t,]Un (1) dr ds‘t s 2= | wo+ f Rio eg\Un" (r)dr| ds0 0ot<C(wo(a)) +ct | juz” |? ds0