76.5. REPLACING Φ WITH σ (u) 2575

and let u be the solution which results from placing w in σ . Then from the estimates,

⟨Bu,u⟩(t)−⟨Bu0,u0⟩+δ

∫ t

0∥u∥p

V ds = 2∫ t

0⟨ f ,u⟩ds+C (b3,b4,b5)

∫ t

0⟨Bu,u⟩ds+

∫ t

0⟨Bσ (w) ,σ (w)⟩L2

ds+2M∗ (t)

≤ 2∫ t

0⟨ f ,u⟩ds+C (b3,b4,b5)+λ

∫ t

0⟨Bu,u⟩ds+

∫ t

0

(C+C∥w∥2

W

)ds+2M∗ (t)

where M∗ (t) = sups∈[0,t] |M (s)| and the quadratic variation of M is no larger than∫ t

0∥σ (w)∥2 ⟨B(u) ,u⟩ds

Then using Gronwall’s inequality, one obtains an inequality of the form

sups∈[0,T ]

⟨Bu,u⟩(s)≤C+C(

M∗ (t)+∫ t

0∥w∥2

W ds)

where C = C (u0, f ,δ ,λ ,b3,b4,b5,T ) and is integrable. Then take expectation. By Burk-holder Davis Gundy inequality and adjusting constants as needed,

E

(sup

s∈[0,T ]⟨Bu,u⟩(s)

)

≤ C+C∫

∫ T

0∥w∥2

W dsdP+C∫

(∫ T

0∥σ (w)∥2 ⟨B(u) ,u⟩ds

)1/2

dP

≤ C+C∫

∫ T

0∥w∥2

W dsdP+C∫

sups∈[0,T ]

⟨Bu,u⟩1/2 (s)(∫ T

0∥σ (w)∥2 ds

)1/2

dP

≤C+C∫

∫ T

0∥w∥2

W dsdP+12

E

(sup

s∈[0,T ]⟨Bu,u⟩(s)

)+C

∫Ω

∫ T

0

(C+C∥w∥2

W

)Thus

E (⟨Bu,u⟩(t))≤ E

(sup

s∈[0,T ]⟨Bu,u⟩(s)

)≤C+C

∫Ω

∫ T

0∥w∥2

W dsdP

and so

∥u∥2L∞([0,T ],L2(Ω,W )) ≤C+C

∫Ω

∫ T

0∥w∥2

W dsdP

which implies u ∈ L∞([0,T ] ,L2 (Ω,W )

)and is progressively measurable.

Using the monotonicity assumption, there is a suitable λ such that

12⟨B(u1−u2) ,u1−u2⟩(t)+ r

∫ t

0∥u1−u2∥2

W ds

−λ

∫ t

0⟨B(u1−u2) ,u1−u2⟩ds

76.5. REPLACING ® WITH o (u) 2575and let u be the solution which results from placing w in o. Then from the estimates,(Buu) (1) — (Buo,uo) +5 [ull as =2 [ (f,u)ds-+C (bs, ba,bs)+a [ (Busu)ds+ [ (Bo (w) ,o(w)) v,ds-+2M" (1)<2/ (Psu) ds-+C(bssbasbs) +A | (Busu)ds+ [ (C-+C|lwlly,) ds+ 2M" (r)where M* (t) = supscjo yj |M (s)| and the quadratic variation of M is no larger than[ic oi? Bw wasThen using Gronwall’s inequality, one obtains an inequality of the formtsup (Bisa) (s) <C-+C(M°(e)+ [Ilyasse€[0,7] 0where C = C (uo, f,6,A4, 63, b4,bs,T) and is integrable. Then take expectation. By Burk-holder Davis Gundy inequality and adjusting constants as needed,e( sup (Bu,u) )s€[0,T]c+e ff \wizasar+c [ (foo I? eu) was) ” pp<r 2 1/2 r 2 "/2< c+ef | |wilipdsaP +c [ sup (Bu,u)'/ (| lo (w)| as) dPJQISO JQ. se[0,T] 0<c+c[ |" |\w\2,asaP+ te B cf [ (c+cywl?<c+ef | |wlfivasaP +; sup. (Buu) (0) ) + Lf (c+elmivy)ThusTE(B) (0) < ( ianis)) seve, | lo||2, dsdPs€[0,7] JQ SOand soT2 2lule-(oraram) <C+€ f, [ Ibwlivasarwhich implies u € L® ([0, 7] ,L? (Q,W)) and is progressively measurable.Using the monotonicity assumption, there is a suitable A such that1 t5 (Blu — ur) san ua) (1) fer — ual dst-2 | (B (uy — uz) ,u) —u2) ds0