12.1. OUTER MEASURES 271

S⋂

AC⋂BC

S⋂

AC⋂B

S⋂

A⋂

B

S⋂

A⋂

BC

A

B

S

Since µ is subadditive,

µ (S)≤ µ(S∩A∩BC)+µ (A∩B∩S)+µ

(S∩B∩AC)+µ

(S∩AC ∩BC) .

Now using A,B ∈S ,

µ (S) ≤ µ(S∩A∩BC)+µ (S∩A∩B)+µ

(S∩AC ∩B

)+µ

(S∩AC ∩BC)

= µ (S∩A)+µ(S∩AC)= µ (S)

It follows equality holds in the above. Now observe using the picture if you like that

(A∩B∩S)∪(S∩B∩AC)∪ (S∩AC ∩BC)= S\ (A\B)

and therefore,

µ (S) = µ(S∩A∩BC)+µ (A∩B∩S)+µ

(S∩B∩AC)+µ

(S∩AC ∩BC)

≥ µ (S∩ (A\B))+µ (S\ (A\B)) .

Therefore, since S is arbitrary, this shows A\B ∈S .Since Ω ∈S , this shows that A ∈S if and only if AC ∈S . Now if A,B ∈S , A∪B =

(AC ∩ BC)C = (AC \ B)C ∈ S . By induction, if A1, · · · ,An ∈ S , then so is ∪ni=1Ai. If

A,B ∈S , with A∩B = /0,

µ(A∪B) = µ((A∪B)∩A)+µ((A∪B)\A) = µ(A)+µ(B).

By induction, if Ai∩A j = /0 and Ai ∈S , µ(∪ni=1Ai) = ∑

ni=1 µ(Ai).

12.1. OUTER MEASURES 271Since jt is subadditive,u(S) <u (SNANBS) + (ANBNS) +y (SNBNAS) + (SNAC NBS).Now using A,B € .Y,u(S) < pw(SNANBS) +u(SNANB) +p (SAAC NB) + yu (SNAS NBS)= B(SNA) +E (SNAS) = (5)It follows equality holds in the above. Now observe using the picture if you like that(ANBNS)U(SNBNAS) U (SNA NBS) = S\ (A\B)and therefore,u(S) ut (SNANBS) +H (ANBNS) +p (SNBNAS) + (SNAC NBS)B(SO(A\B)) +H (S\(A\B)).Therefore, since S is arbitrary, this shows A\ B € 7.Since Q € .Y, this shows that A € .Y if and only if AC € .Y. Now if A,B €.Y, AUB=(ASN BS)© = (AC \ B)© € SY. By induction, if Ay,---,An € -Y, then so is U'_,A;. IfA,BE SY, withAnB=9,IV1 (AUB) = M((AUB)MA) + H((AUB) \A) = H(A) + (8B).By induction, if A; NA; = and A; € Y, U(UL_, Ai) = LiL, (Ai).