Bibliography[1] Adams R. Sobolev Spaces, Academic Press, New York, San Francisco, London,

1975.

[2] Andrews T., Kuttler K., Li J., Shillor M. Measurable Solutions for elliptic inclu-sions and quasi-static problems, submitted.

[3] Alfors, Lars Complex Analysis, McGraw Hill 1966.

[4] Apostol, T. M., Mathematical Analysis, Addison Wesley Publishing Co., 1969.

[5] Apostol, T. M., Calculus second edition, Wiley, 1967.

[6] Apostol, T. M., Mathematical Analysis, Addison Wesley Publishing Co., 1974.

[7] Ash, Robert, Complex Variables, Academic Press, 1971.

[8] Asplund, E. Averaged norms, Israel J. Math. 5 (1967), 227-233.

[9] Aubin, J.P. and Cellina A. Differential Inclusions Set-Valued Maps and ViabilityTheory, Springer 1984.

[10] Aubin, J.P. and Frankowska, H. Set valued Analysis, Birkhauser, Boston (1990).

[11] Baker, Roger, Linear Algebra, Rinton Press 2001.

[12] Balakrishnan A.V., Applied Functional Analysis, Springer Verlag 1976.

[13] Barbu V., Nonlinear semigroups and differential equations in Banach spaces, No-ordhoff International Publishing, 1976.

[14] Bardos and Brezis, Sur une classe de problemes d’evolution non lineaires, J. Dif-ferential Equations 6 (1969).

[15] Bensoussan, A. and Temam, R.: Equations stochastiques de type Navier-Stokes. J.Funct. Anal., 13, 195-222, 1973.

[16] Bergh J. and Löfström J. Interpolation Spaces, Springer Verlag 1976.

[17] Berkovits J. and Mustonen V., Monotonicity methods for nonlinear evolutionequations, Nonlinear Analysis 27 (1996) 1397-1405.

[18] Bian, W. and Webb, J.R.L. Solutions of nonlinear evolution inclusions, NonlinearAnalysis 37 pp. 915-932. (1999).

[19] Billingsley P., Probability and Measure, Wiley, 1995.

[20] Bledsoe W.W., Am. Math. Monthly vol. 77, PP. 180-182 1970.

[21] Bogachev Vladimir I. Gaussian Measures American Mathematical Society Mathe-matical Surveys and Monographs, volume 62 1998.

[22] Brézis, H., Équations et inéquations non linéaires dans les espaces vectoriels endualité , Ann. Inst. Fourier (Grenoble) 18 (1968) pp. 115-175.

2731