12.9. PRODUCT MEASURES 317

Corollary 12.9.13 If f ∈ L1 (X×Y ) , then∫f d (µ×ν) =

∫ ∫f (x,y)dµdν =

∫ ∫f (x,y)dνdµ.

If µ and ν are σ finite, then if f is µ×ν measurable having complex values and either∫ ∫| f |dµdν < ∞ or

∫ ∫| f |dνdµ < ∞, then

∫| f |d (µ×ν)< ∞ so f ∈ L1 (X×Y ) .

Proof: Without loss of generality, it can be assumed that f has real values. Then

f =| f |+ f − (| f |− f )

2

and both f+ ≡ | f |+ f2 and f− ≡ | f |− f

2 are nonnegative and are less than | f |. Therefore,∫gd (µ×ν)< ∞ for g = f+ and g = f− so the above theorem applies and∫

f d (µ×ν) ≡∫

f+d (µ×ν)−∫

f−d (µ×ν)

=∫ ∫

f+dµdν−∫ ∫

f−dµdν

=∫ ∫

f dµdν .

It remains to verify the last claim. Suppose s is a simple function,

s(x,y)≡m

∑i=1

ciXEi ≤ | f |(x,y)

where the ci are the nonzero values of s. Then

sXRn ≤ | f |XRn

where Rn ≡ Xn×Yn where Xn ↑ X and Yn ↑ Y with µ (Xn) < ∞ and ν (Yn) < ∞. It follows,since the nonzero values of sXRn are achieved on sets of finite measure,∫

sXRnd (µ×ν) =∫ ∫

sXRndµdν .

Letting n→ ∞ and applying the monotone convergence theorem, this yields∫sd (µ×ν) =

∫ ∫sdµdν . (12.9.48)

Now let sn ↑ | f | where sn is a nonnegative simple function. From 12.9.48,∫snd (µ×ν) =

∫ ∫sndµdν .

Letting n→ ∞ and using the monotone convergence theorem, yields∫| f |d (µ×ν) =

∫ ∫| f |dµdν < ∞

12.9. PRODUCT MEASURES 317Corollary 12.9.13 If f ¢ L'(X xY), then[tax = [ [ #sauav= | [ ees)avan.If uw and v are o finite, then if f is Ux V measurable having complex values and eitherSS \fldudv <vor f f|f\dvdu < oe, then [| f|d(uxv) <0 so f EL'(X xY).Proof: Without loss of generality, it can be assumed that f has real values. Then+ f-(Ufl-f)2f=and both ft = lies and f- = Wits are nonnegative and are less than |f|. Therefore,Jfgd(uUx Vv) < for g = ft and g = f~ so the above theorem applies and[fag - [ rag)/ / ftdudv — / / fodudv/ / fdudv.It remains to verify the last claim. Suppose s is a simple function,j[ faux)m5(x,y) = ci 2%r, < f| (x,y)i=|where the c; are the nonzero values of s. Thensr, <\f| Zr,where R, = X, x Y, where X, + X and Y, ¢ Y with p (X;,) < ce and v(Y;,) < oe. It follows,since the nonzero values of s.2p, are achieved on sets of finite measure,[2nd XV)= | [s%.auav.Letting n — oo and applying the monotone convergence theorem, this yields/ sd (LXV) = / / sdudv. (12.9.48)Now let s, + |,f| where s, is a nonnegative simple function. From 12.9.48,/ snd (IXY) = / / s,dudv.Letting n — and using the monotone convergence theorem, yieldsfiriaqexy= | [inlduav <«