13.7. MAPPINGS WHICH ARE NOT ONE TO ONE 359

13.7 Mappings Which Are Not One To OneNow suppose h is only C1, not necessarily one to one. For

U+ ≡ {x ∈U : |detDh(x)|> 0}

and Z the set where |detDh(x)|= 0, Lemma 13.6.5 implies mn(h(Z)) = 0. For x ∈U+, theinverse function theorem implies there exists an open set Bx such that x ∈ Bx ⊆U+, h isone to one on Bx.

Let {Bi} be a countable subset of {Bx}x∈U+ such that U+ = ∪∞i=1Bi. Let E1 = B1. If

E1, · · · ,Ek have been chosen, Ek+1 = Bk+1 \∪ki=1Ei. Thus

∪∞i=1Ei =U+, h is one to one on Ei, Ei∩E j = /0,

and each Ei is a Borel set contained in the open set Bi. Now define

n(y)≡∞

∑i=1

Xh(Ei)(y)+Xh(Z)(y).

The set, h(Ei) ,h(Z) are measurable by Lemma 13.5.2. Thus n(·) is measurable.

Lemma 13.7.1 Let F ⊆ h(U) be measurable. Then∫h(U)

n(y)XF(y)dy =∫

UXF(h(x))|detDh(x)|dx.

Proof: Using Lemma 13.6.5 and the Monotone convergence Theorem or Fubini’s The-orem,

∫h(U)

n(y)XF(y)dy =∫

h(U)

 ∞

∑i=1

Xh(Ei)(y)+

mn(h(Z))=0︷ ︸︸ ︷Xh(Z)(y)

XF(y)dy

=∞

∑i=1

∫h(U)

Xh(Ei)(y)XF(y)dy

=∞

∑i=1

∫h(U)∩h(Ei)

XF(y)dy

=∞

∑i=1

∫h(Bi)∩h(Ei)

XF(y)dy

=∞

∑i=1

∫h(Bi)

Xh(Ei)(y)XF(y)dy

=∞

∑i=1

∫Bi

XEi(x)XF(h(x))|detDh(x)|dx

=∞

∑i=1

∫U

XEi(x)XF(h(x))|detDh(x)|dx

=∫

U

∑i=1

XEi(x)XF(h(x))|detDh(x)|dx

13.7. MAPPINGS WHICH ARE NOT ONE TO ONE 35913.7 Mappings Which Are Not One To OneNow suppose h is only C!, not necessarily one to one. ForU, = {x €U: |detDh(x)| > 0}and Z the set where |det Dh (x)| = 0, Lemma 13.6.5 implies m,(h(Z)) = 0. For x € U, theinverse function theorem implies there exists an open set By such that x € By C U1, hisone to one on By.Let {B;} be a countable subset of {Bx}xey, such that U, = U2,B;. Let E; = By. IfE\,--- ,E, have been chosen, Ex) = By+1 \ UK, Ei. ThusUj, E; = U,, his one to one on E;, E; NE; = 9,and each £; is a Borel set contained in the open set B;. Now defineny) = y? Awe, (¥) + Anz) (y)-i=lThe set, h (Z;) ,h(Z) are measurable by Lemma 13.5.2. Thus 1(-) is measurable.Lemma 13.7.1 Let F Ch(U) be measurable. Theni n(y) Xe (y)dy = | Xe (h(x))| det h(x) |dx.h(U) JuProof: Using Lemma 13.6.5 and the Monotone convergence Theorem or Fubini’s The-orem,mp (h(Z))=0ve i| no%eordy = [LY Mey) + Faw) | %e()ayh(U) h(U) \ j=1= LY] Aney(y) %ey)ayi=1¥h(U)y/ Rely)ayj=] Yh(U)Nh(E;})=Lf[ oo Frlyyayj=] 7 h(B))Nh(E;)= L hws Ane) (¥) Pr (y)dy= »» [ KXp,(x) Br (h(x)) | det D(x) |dx= y | Xe, (x) Rr (h(x))| det h(x) |dxi=1vU_ [ Yi (s) % (h(x) der Dhl) |e