456 CHAPTER 17. BANACH SPACES

Corollary 17.3.8 Let z,w ∈ C. Then for p ∈ (1,2) ,∣∣∣∣ z+w2

∣∣∣∣q + ∣∣∣∣ z−w2

∣∣∣∣q ≤ (12|z|p + 1

2|w|p

)q/p

Proof: One of |w| , |z| is larger. Say |w| ≥ |z| . Then dividing by |w|q , for t = z/w,showing the above inequality is equivalent to showing that for all t ∈ C, |t| ≤ 1,∣∣∣∣ t +1

2

∣∣∣∣q + ∣∣∣∣1− t2

∣∣∣∣q ≤ (12|t|p + 1

2

)q/p

Now q > 2 and so by the same argument given in proving Corollary 17.3.5, for t = reiθ , theleft side of the above inequality is maximized when θ = 0. Hence, from Lemma 17.3.7,∣∣∣∣ t +1

2

∣∣∣∣q + ∣∣∣∣1− t2

∣∣∣∣q ≤ ∣∣∣∣ |t|+12

∣∣∣∣q + ∣∣∣∣1−|t|2

∣∣∣∣q

≤(

12|t|p + 1

2

)q/p

.

From this the hard Clarkson inequality follows. The two Clarkson inequalities aresummarized in the following theorem.

Theorem 17.3.9 Let 2≤ p. Then∣∣∣∣∣∣∣∣ f +g2

∣∣∣∣∣∣∣∣pLp+

∣∣∣∣∣∣∣∣ f −g2

∣∣∣∣∣∣∣∣pLp≤ 1

2(|| f ||pLp + ||g||pLp

)Let 1 < p < 2. Then for 1/p+1/q = 1,∣∣∣∣∣∣∣∣ f +g

2

∣∣∣∣∣∣∣∣qLp+

∣∣∣∣∣∣∣∣ f −g2

∣∣∣∣∣∣∣∣qLp≤(

12|| f ||pLp +

12||g||pLp

)q/p

Proof: The first was established above.∣∣∣∣∣∣∣∣ f +g2

∣∣∣∣∣∣∣∣qLp+

∣∣∣∣∣∣∣∣ f −g2

∣∣∣∣∣∣∣∣qLp≤

(∫Ω

∣∣∣∣ f +g2

∣∣∣∣p dµ

)q/p

+

(∫Ω

∣∣∣∣ f −g2

∣∣∣∣p dµ

)q/p

=

(∫Ω

(∣∣∣∣ f +g2

∣∣∣∣q)p/q

)q/p

+

(∫Ω

(∣∣∣∣ f −g2

∣∣∣∣q)p/q

)q/p

Now p/q < 1 and so the backwards Minkowski inequality applies. Thus

(∫Ω

(∣∣∣∣ f +g2

∣∣∣∣q + ∣∣∣∣ f −g2

∣∣∣∣q)p/q

)q/p

456 CHAPTER 17. BANACH SPACESCorollary 17.3.8 Let z,w € C. Then for p € (1,2),q 1,1 \t?<{— _< (Jla"+5 1")Proof: One of |w],|z| is larger. Say |w| > |z|. Then dividing by |w|‘, for t = z/w,showing the above inequality is equivalent to showing that for all t € C, |¢| <1,q 1,1 q/P< (= |e/P+=«(yoreNow q > 2 and so by the same argument given in proving Corollary 17.3.5, for t = re’, theleft side of the above inequality is maximized when @ = 0. Hence, from Lemma 17.3.7,4 \1-t 4 \1-|e|+ +q+Z+w2Z—W2an 1-t2t+12q<t+1 q2\¢|+122 2| 1 q/P<{=|e/P += .< (5K +5) |From this the hard Clarkson inequality follows. The two Clarkson inequalities aresummarized in the following theorem.Theorem 17.3.9 Let 2 < p. Thenftell? P2f=8 |+|| <5 (Ilsllf> + lellfr)2 WuLPLet 1 < p <2. Then for 1/p+1/q=1,q+LPft+e 1 p 1 p q/P< {= _|S 1S (5llAe+ 5 lllProof: The first was established above.ialLP(Al) (L | 0)”(L(es2"4)" (c(t)Now p/q < 1 and so the backwards Minkowski inequality applies. Thus“(L(G)”f-s\|‘2/P" |f-s85