502 CHAPTER 18. TOPOLOGICAL VECTOR SPACES

covers f (K). Letφ i (y)≡ (r−ρA (y− yi))

+.

Thus φ i (y)> 0 if y ∈ yi +U and φ i (y) = 0 if y /∈ yi +U . For x ∈ f (K), let

ψ i (x)≡ φ i (x)

(n

∑j=1

φ j (x)

)−1

.

Then 18.5.21 is satisfied. Now let fU be given by 18.5.22 for x ∈ K. For such x,

f (x)− fU (x) = ∑{i: f (x)−yi∈U}

( f (x)− yi)ψ i ( f (x))

+ ∑{i: f (x)−yi /∈U}

( f (x)− yi)ψ i ( f (x))

= ∑{i: f (x)−yi∈U}

( f (x)− yi)ψ i ( f (x)) =

∑{i: f (x)−yi∈U}

( f (x)− yi)ψ i ( f (x))+ ∑{i: f (x)−yi /∈U}

0ψ i ( f (x)) ∈U

because 0 ∈U , U is convex, and 18.5.21.We think of fU as an approximation to f .

Lemma 18.5.7 For each U ∈B0, there exists xU ∈ convex hull of f (K)⊆ K such that

fU (xU ) = xU .

Proof: If fU (xU ) = xU and

xU =n

∑i=1

aiyi

for ∑ni=1 ai = 1, we need

n

∑j=1

y jψ j

(f

(n

∑i=1

aiyi

))=

n

∑j=1

a jy j.

Also, if this is satisfied, then we have the desired fixed point. This will be satisfied if foreach j = 1, · · · ,n,

a j = ψ j

(f

(n

∑i=1

aiyi

)); (18.5.23)

so, let

Σn−1 ≡

{a ∈ Rn :

n

∑i=1

ai = 1, ai ≥ 0

}

502 CHAPTER 18. TOPOLOGICAL VECTOR SPACEScovers f (K). Let$;(v) =(r—paly—yi))-Thus @;(y) > Oify €y;+U and ¢;(y) =O if y gy; +U. Forx € f (K), letA -1Wi; (x) = @; (x) e 0; «)) ;j=lThen 18.5.21 is satisfied. Now let fy be given by 18.5.22 for x € K. For such x,fix)-fee)= Yo (Ff e)-yi) wi (F@)){i:f(x)—yicU}+ Yo (f@)-y) vif){i:f(x)-yi GU}= Yo (F@)-xw(f@))={if (x)—yieU}Y F@-wwfO)+ Y oy,(f@)) ev{iz f(x)—yjeU} {i:f(x)—yi GU}because 0 € U, U is convex, and 18.5.21. JWe think of fy as an approximation to f.Lemma 18.5.7 For each U € Ao, there exists xy € convex hull of f (K) CK such thatfu (xu) =4u-Proof: If fy (xy) = xu andxy = Yawi=for )"_, aj = 1, we needVy; G (Zen) = \ ajy;.jal i=l jalAlso, if this is satisfied, then we have the desired fixed point. This will be satisfied if foreach j = 1,---,n,aj=W; G (Ze0))) (18.5.23)i=1nmis {acrsfa=1a>0]i=]i=so, let