532 CHAPTER 19. HILBERT SPACES

Proof: By Theorem 19.3.4

d2 =G( fp1 , · · · , fpn , fm)

G( fp1 , · · · , fpn).

(fpi , fp j

)=∫ 1

0xpixp j dx =

11+ pi + p j

Therefore,

d2 =

∣∣∣∣∣∣∣∣∣∣∣∣

11+p1+p1

11+p1+p2

· · · 11+p1+pn

11+m+p1

11+p2+p1

11+p2+p2

· · · 11+p2+pn

11+m+p2

......

......

11+pn+p1

11+pn+p2

· · · 11+pn+pn

11+pn+m

11+m+p1

11+m+p2

· · · 11+m+pn

11+m+m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

11+p1+p1

11+p1+p2

· · · 11+p1+pn

11+p2+p1

11+p2+p2

· · · 11+p2+pn

......

...1

1+pn+p11

1+pn+p2· · · 1

1+pn+pn

∣∣∣∣∣∣∣∣∣∣Now from the Cauchy identity, letting ai = pi +

12 and b j =

12 + p j with pn+1 = m, the

numerator of the above equals

∏ j<i≤n+1 (pi− p j)(pi− p j)

∏i, j≤n+1 (pi + p j +1)

=∏

nk=1 (m− pk)

2∏ j<i≤n (pi− p j)

2

∏ni=1 (m+ pi +1)∏

nj=1 (m+ p j +1)∏i, j≤n (pi + p j +1)(2m+1)

=∏

nk=1 (m− pk)

2∏ j<i≤n (pi− p j)

2

∏ni=1 (m+ pi +1)2

∏i, j≤n (pi + p j +1)(2m+1)

while the denominator equals∏ j<i≤n (pi− p j)

2

∏i, j≤n (pi + p j +1)

Therefore,

d2 =

(∏

nk=1(m−pk)

2∏ j<i≤n(pi−p j)

2

∏ni=1(m+pi+1)2

∏i, j≤n(pi+p j+1)(2m+1)

)(

∏ j<i≤n(pi−p j)2

∏i, j≤n(pi+p j+1)

)=

∏nk=1 (m− pk)

2

∏ni=1 (m+ pi +1)2 (2m+1)

532 CHAPTER 19. HILBERT SPACESProof: By Theorem 19.3.4a _ G(fp.s°* Sons fm)G(fp,.°°° ston)| =_ PixPi dy =fo. fry) = [xP xPidx=vedoi) = f 1+ pit PjTherefore,1 1 1 1Mypytpi yp tp2 EypytPn tem+piI+po+pi 1+ p2+p2 I+po+pn 1+m+t+p21 1 1 1Pept P Ee Pn p2 Pepi Pn Pepa tmAe _ 1+m+p, 1+m+p2 l+m+pn 1+m+m~— 1 1 1py +P lpi +p I+?) +PnIt+potpi — 1+po+po I+p2+Pn1 1 11+pn+Pi 1+pnt+p2 1+pnt+PnNow from the Cauchy identity, letting aj = pj + 5numerator of the above equalsand bj = 5 + pj with pp1 =m, theTj<i<n+1 (Pi— Pj) (Pi- Pj)Tlij<nti (Pit Pj +1)Mei ( — Pk) Tici<n (pi- pj)”Tei (mt pit 1) Vay (m+ pj +1) jen (i+ Pj +1) (2m+ 1)Mer On — Pe) Mi<i<n (pi- Di)TT (m+ pit 1) Tijen (pit pj +1) (2m+1)while the denominator equals2[j<i<n (Pi - Pj)Tlij<n (pit pj +1)Therefore,( Tif, (m—px)? Tjci<n (pi-p;)° )™ (m+pi +1) Tij<n(pitpjt!) (2m+1)( Ilj<i<n (pi-pj)° )Ti j<n(pit+pj+!)Tia (m= pr)”THs (m+ pit 1)? (2m+1)P=