566 CHAPTER 19. HILBERT SPACES
Theorem 19.12.3 Let 19.12.75 hold. Then there exists a unique solution to 19.12.74 inBC ([a,b] ;X).
Proof: Use the norm of 19.12.73 where γ ̸= 0 is described later. Let T : BC ([a,b] ;X)→BC ([a,b] ;X) be defined by
T x(t)≡ x0−∫ t
aF (s,x(s))ds
Then
∥T x(t)−Ty(t)∥X =
∥∥∥∥∫ t
aF (s,x(s))ds−
∫ t
aF (s,y(s))ds
∥∥∥∥≤ K
∫ t
a∥x(s)− y(s)∥ds = K
∫ t
a
∥∥∥(x(s)− y(s))eγ(s−a)e−γ(s−a)∥∥∥ds
≤ K∫ t
ae−γ(s−a)ds∥x− y∥
γ= K
(e−γ(t−a)
−γ+
1γ
)∥x− y∥
γ
Therefore,
eγ(t−a) ∥T x(t)−Ty(t)∥X ≤ K
(eγ(t−a)
γ− 1
γ
)∥x− y∥
γ
∥T x−Ty∥γ≤ sup
t∈[a,b]K
(eγ(t−a)
γ− 1
γ
)∥x− y∥
γ
Letting γ =−m2, this reduces to
∥T x−Ty∥−m2 ≤Km2 ∥x− y∥−m2
and so if K/m2 < 1/2, this shows the solution to the integral equation is the unique fixedpoint of a contraction mapping defined on BC ([a,b] ;X). This shows existence and unique-ness of the initial value problem 19.12.74.
Definition 19.12.4 Let S : [0,∞)→L (X ,X) be continuous and satisfy
1. S (t + s) = S (t)S (s) called the semigroup identity.
2. S (0) = I
3. limh→0+S(h)x−x
h = Ax for A a densely defined closed linear operator whenever x ∈D(A)⊆ X .
Then S is called a continuous semigroup and A is said to generate S.