586 CHAPTER 19. HILBERT SPACES

Proof: First I show the following claim.Claim:

∫ t0 S (t− s)g(s)ds ∈ D(Λ) and

Λ

(∫ t

0S (t− s)g(s)ds

)= S (t)g(0)−g(t)+

∫ t

0S (t− s)g′ (s)ds

Proof of the claim:

1h

(S (h)

∫ t

0S (t− s)g(s)ds−

∫ t

0S (t− s)g(s)ds

)

=1h

(∫ t

0S (t− s+h)g(s)ds−

∫ t

0S (t− s)g(s)ds

)=

1h

(∫ t−h

−hS (t− s)g(s+h)ds−

∫ t

0S (t− s)g(s)ds

)

=1h

∫ 0

−hS (t− s)g(s+h)ds+

∫ t−h

0S (t− s)

g(s+h)−g(s)h

−1h

∫ t

t−hS (t− s)g(s)ds

Using the estimate in Theorem 19.14.3 on Page 577 and the dominated convergence theo-rem, the limit as h→ 0 of the above equals

S (t)g(0)−g(t)+∫ t

0S (t− s)g′ (s)ds

which proves the claim.Since y0 ∈ D(Λ) ,

S (t)Λy0 = S (t) limh→0

S (h)y0− y0

h

= limh→0

S (t +h)−S (t)h

y0

= limh→0

S (h)S (t)y0−S (t)y0

h(19.14.94)

Since this limit exists, the last limit in the above exists and equals

ΛS (t)y0 (19.14.95)

and so S (t)y0 ∈ D(Λ). Now consider 19.14.93.

y(t +h)− y(t)h

=S (t +h)−S (t)

hy0+

1h

(∫ t+h

0S (t− s+h)g(s)ds−

∫ t

0S (t− s)g(s)ds

)

586 CHAPTER 19. HILBERT SPACESProof: First I show the following claim.Claim: {j S(t —s) g(s)ds € D(A) anda( [/s@-s)eb)4s)Proof of the claim:7 (s0 ['se—se0)as— [str-s)e(s)as)= : ([st-s+maisas- ['s@—s)@6)4s)— - (J), se-9e4mas— [st-s)e()as)J—hs(1)9(0) 8) + ['se—s)g'(s)as° t—h s _ 5= [| ,Ste-selo+h)ds+ ; (ps SOM 8)1 t; St s)als)dsUsing the estimate in Theorem 19.14.3 on Page 577 and the dominated convergence theo-rem, the limit as h — 0 of the above equalsS(1)8(0)-w()+ [ St-s)¢()aswhich proves the claim.Since yo € D(A),S(t)Ayo = S(t) tim SL) 20=%o— jm SSO) ¥0 —S (1) yoh0 h(19.14.94)Since this limit exists, the last limit in the above exists and equalsAS (t) yo (19.14.95)and so S(t) yo € D(A). Now consider 19.14.93.een ayo _ SU+H) SOh1( ["s(e—s-+ng(s)as— [' Stes) @()as)