21.3. OPERATOR VALUED FUNCTIONS 665

Proof of claim: From 21.3.16 and the definition of An and ek⊗ ek,

(An−1en+1,en+1) =

((A−

n−1

∑k=1

λ kek⊗ ek

)en+1,en+1

)= (Aen+1,en+1) = (Anen+1,en+1)

Thus,

λ n+1 = (Anen+1,en+1)

= (An−1en+1,en+1)−λ n |(en,en+1)|2

= (An−1en+1,en+1)

By the previous claim. Therefore,

|λ n+1|= |(An−1en+1,en+1)| ≤ |(An−1en,en)|= |λ n|

by the definition of |λ n|. (en makes |(An−1x,x)| as large as possible.)Claim 3: limn→∞ λ n = 0.Proof of claim: If for some n,λ n = 0, then λ k = 0 for all k > n by claim 2. Thus, for

some n,

A =n

∑k=1

λ kek⊗ ek

Assume then that λ k ̸= 0 for any k. Then if limk→∞ |λ k|= ε > 0, one contradicts, ∥ek∥= 1for all k because

∥Aen−Aem∥2 = ∥λ nen−λ mem∥2

= λ2n +λ

2m ≥ 2ε

2

which shows there is no Cauchy subsequence of {Aen}∞

n=1 , which contradicts the compact-ness of A. This proves the claim.

Claim 4: ∥An∥→ 0Proof of claim: Let x,y ∈ B

|λ n+1| ≥∣∣∣∣(An

x+ y2

,x+ y

2

)∣∣∣∣=

∣∣∣∣14 (Anx,x)+14(Any,y)+

12(Anx,y)

∣∣∣∣≥ 1

2|(Anx,y)|− 1

4|(Anx,x)+(Any,y)|

≥ 12|(Anx,y)|− 1

4(|(Anx,x)|+ |(Any,y)|)

≥ 12|(Anx,y)|− 1

2|λ n+1|

and so3 |λ n+1| ≥ |(Anx,y)| .

It follows ∥An∥ ≤ 3 |λ n+1| . By 21.3.16 this proves 21.3.15 and completes the proof.

21.3. OPERATOR VALUED FUNCTIONS 665Proof of claim: From 21.3.16 and the definition of A, and e;, ® ex,n—1(An-1nt1,€nt1) = ((1-L anon) coek=1= (Aeéns1,€nt1) = (Anén41;€n41)Thus,Anti = (Anén415€n+1)= (An—1envts€n+1) —An|(€nsenv) |= (An—1€n+1;en+1)By the previous claim. Therefore,JAn+i| = |(An—1en+1,€n+1)| S |(An—1en; en)| = [Anby the definition of |A,,|. (e, makes |(A,—1x,x)| as large as possible.)Claim 3: limy..A, = 0.Proof of claim: If for some n,A,, = 0, then A, = 0 for all k > n by claim 2. Thus, forsome n,nA= y Apee @ €xk=1Assume then that A, 4 0 for any k. Then if limg_,..|A,%| = € > 0, one contradicts, ||ex|| = 1for all k because\|Aen —Aem||- = \Anen —Amem||”= A+AZ > 26?which shows there is no Cauchy subsequence of {Ae, },_, , which contradicts the compact-ness of A. This proves the claim.Claim 4: ||A,,|| > 0Proof of claim: Let x,y € BX+y X+[Anyi] = (arp)= |E(Apx.t) +4 (Anysy) +5 Antsy)= 4 nX,X ra ny, y¥ 5 6 nX,¥1 1> 3 (Anx,y)| ~ 3 [(Anx,x) + (Any,y)|1 12 5 |(Anxsy)|— 3 (I(Anx,)| + |(Any,y)1)1 12 3 (Any) = 5 Ant]and so3|An+il = |(Anx,y)|-It follows ||An|| < 3|An+1|. By 21.3.16 this proves 21.3.15 and completes the proof.