694 CHAPTER 21. THE BOCHNER INTEGRAL

Lemma 21.10.5 For each n, Aεn satisfies the conditions of Theorem 21.10.3.

Proof: First consider the equicontinuity condition of that theorem. It suffices to showthat if η > 0 then there exists δ > 0 such that if |h|< δ , then for any u ∈A and x ∈ Gε ,∥∥∥uXGε

∗ψn (x+h)−uXGε∗ψn (x)

∥∥∥U< η

Always assume |h|< dist(Gε ,Ω

C), and x ∈Gε . Also assume that |h| is small enough that(∫

Rm

∣∣∣(XGε(x−y+h)−XGε

(x−y))

ψn (y)∣∣∣p′ dz

)1/p′

=

(∫Rm

∣∣∣(XGε(z+h)−XGε

(z))

ψn (x− z)∣∣∣p′ dz

)1/p′

2M(21.10.45)

This can be obtained because by Holder’s inequality,(∫Rm

∣∣∣(XGε(z+h)−XGε

(z))

ψn (x− z)∣∣∣p′ dz

)1/p′

≤(∫

Rm

∣∣∣XGε(z+h)−XGε

(z)∣∣∣2p′

dz) 1

2p′(∫

Rmψn (x− z)2p′ dz

) 12p′

which is small independent of x for |h| small enough, thanks to continuity of translation inL2p′ (Rm). Then

∥∥∥uXGε∗ψn (x+h)−uXGε

∗ψn (x)∥∥∥

U

=

∥∥∥∥∫Rm

(ũ(x+h−y)XGε

(x+h−y)− ũ(x−y)XGε(x−y)

)ψn (y)dy

∥∥∥∥U

≤∫Rm

∥∥∥(ũ(x+h−y)XGε(x+h−y)− ũ(x−y)XGε

(x−y))∥∥∥

Uψn (y)dy

Changing the variables,

≤∫Rm

∥∥∥∥∥ (ũ(z+h)− ũ(z))XGε(z+h)

+ũ(z)(XGε

(z+h)−XGε(z)) ∥∥∥∥∥

U

ψn (x− z)dz

≤∫Rm

∥∥∥(ũ(z+h)− ũ(z))XGε(z+h)

∥∥∥U

ψn (x− z)dz

+∫Rm∥ũ(z)∥U

∣∣∣XGε(z+h)−XGε

(z)∣∣∣ψn (x− z)dz (21.10.46)

The first integral

≤(∫

Rm∥ũ(z+h)− ũ(z)∥p

U

)1/p(∫Rm

ψp′n (x− z)dz

)1/p′

694 CHAPTER 21. THE BOCHNER INTEGRALLemma 21.10.5 For each n, Gey, satisfies the conditions of Theorem 21.10.3.Proof: First consider the equicontinuity condition of that theorem. It suffices to showthat if 7 > 0 then there exists 6 > 0 such that if |h| < 6, then for any u € & and x € Ge,eres Y, (xth) -u2e@*y, (x) <nAlways assume |h| < dist (Gz,QC) , and x € Gz. Also assume that |h| is small enough that(pl 1/p' n(2ac(@+h) — %_(2)) Vn (X—2)| as) <a (21.10.45)(2eelx ~yth)— 2@-(x— y)) Wn |" as) “” =Uh.This can be obtained because by Holder’s inequality,Uh |( Fae le+h) ~ %ee(2)) Vy x—2)|" as) uP1 1A 2p! 2p , 3,7<([, eae 2a") ([_ year)which is small independent of x for |h| small enough, thanks to continuity of translation inLP" (IR). Thenlw 2G VW, (xth) —u2E@*V, (x),[.. (a(x+h-y) XG, (x+h—y)—a(x—y) %g(x-y)) Yu (yayheChanging the variables,UIA(a(x+h—y) 2G, (x+h—y)—a(x-y) 2G_(x—y))|_ va (yay+f la (lly | 2g, (a-+h) - XG, (0)| w,(x—z)dz (21.10.46)The first integral