696 CHAPTER 21. THE BOCHNER INTEGRAL

second sort are totally bounded while those functions of the first sort don’t. Assume alwaysthat 1/n < dist

(Gε ,Ω

C). Using Minkowski’s inequality,∥∥∥uXGε

−uXGε∗ψn

∥∥∥Lp(Gε ;W)

=

(∫Rm

∥∥∥∥∫Rm

(uXGε

(x)−uXGε(x−y)

)ψn (y)dy

∥∥∥∥p

Wdx)1/p

≤∫

B(0,1/n)ψn (y)

(∫Rm

∥∥∥(uXGε(x)−uXGε

(x−y))∥∥∥p

Wdx)1/p

dy

≤∫

B(0,1/n)ψn (y)

(∫Rm∥(ũ(x)− ũ(x−y))∥p

W dx)1/p

dy

≤∫

B(0,1/n)ψn (y)

( ∫Rm

η

50(2p−1)M∥ũ(x)− ũ(x−y)∥p

V

+Cη ∥ũ(x)− ũ(x−y)∥pU dx

)1/p

dy

≤∫

B(0, 1n )

ψn (y)

( ∫Rm

η

50(2p−1)M2p−12

(∥ũ(x)∥p

V

)dx

+Cη

∫Rm ∥ũ(x)− ũ(x−y)∥p

U dx

)1/p

dy

≤∫

B(0, 1n )

ψn (y)( ∫

Rmη

25M

(∥ũ(x)∥p

V

)dx

+∫Rm Cη ∥ũ(x)− ũ(x−y)∥p

U dx

)1/p

dy

≤∫

B(0, 1n )

ψn (y)(

η

25+∫Rm

Cη ∥ũ(x)− ũ(x−y)∥pU dx

)1/p

dy

By assumption 21.10.42, there exists N such that if n≥ N, then |y|< 1n and for all u ∈A ,∥∥∥uXGε

−uXGε∗ψn

∥∥∥Lp(Gε ;W)

∫B(0, 1

n )ψn (y)

25+

η p

8p

)1/p

dy

≤∫

B(0, 1n )

ψn (y)(

η

25+

η

8

)dy

25+

η

8

Recall η < 1.Let n be this large. Then let

{ukXGε

∗ψn

}r

k=1be a η/8 net for Aεn in Lp

(Gε ;W

).

Then consider the balls B(

ukXGε, η

4

)in Lp

(Gε ;W

). If wXGε

is in Aε , is it in some

B(

ukXGε, η

2

)? By what was just shown, there is k such that∥∥∥wXGε

∗ψn−ukXGε∗ψn

∥∥∥Lp(Gε ;W)

8

696 CHAPTER 21. THE BOCHNER INTEGRALsecond sort are totally bounded while those functions of the first sort don’t. Assume alwaysthat 1/n < dist (Ge, QC). Using Minkowski’s inequality,|e 2ee— Uu2G* VW, Ln(Gew)P 1/pdy ax)W(UU.< Dron Vn (y) (/..< [voi ([.,@)—ax-ylfias) ayFam scarey lt) ~ a (8 my| +Cy |i (x) —a(x—y)||P, dx ay‘ Jem soa)” ~12 (||@(x)|Ip) ax aa< foo %( +Cp Jigm || (x) —H (xy) ||p ax ,)|Jam ay (li) I)< Jorg) (ee ipa ya< fg ¥al) (35+ [..enl@)—ata-y)lba)By assumption 21.10.42, there exists N such that ifn > N, then |y| < i and for allu c &,[hn ("Pee — 4 %G_(%—V) Val)(u 2%) Uke (x— y)) a") "” yy1/p<L»(Gew) =\/pnaro.) ¥n(¥) & u ¥) “yvay) (sh+ 2) ay|e 2ee— ULG*W,IAoooeRecall 7 < 1.r —Let n be this large. Then let {iu 2G, Vap ; be a 7/8 net for %, in L? (Ge;W) .Then consider the balls B (u 2% 1) in L? (Ge;W). If we, is in %, is it in someB @ LE 4) ? By what was just shown, there is k such thatwee Wn —U2E* VW,1L?(Gesw) 8