21.10. SOME EMBEDDING THEOREMS 701

and so ∫ b

a||(un (t)−un (s))||pW ds

≤∫ b

a

k

∑i=1

1ti− ti−1

∫ ti

ti−1

||un (t)−un (s)||pW dsX[ti−1,ti) (t)dt

=k

∑i=1

1ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

||un (t)−un (s)||pW dsdt. (21.10.50)

From Lemma 21.10.1 if ε > 0, there exists Cε such that

||un (t)−un (s)||pW ≤ ε ||un (t)−un (s)||pE +Cε ||un (t)−un (s)||pX

≤ 2p−1ε (||un (t)||p + ||un (s)||p)+Cε |t− s|p/q

This is substituted in to 21.10.50 to obtain∫ b

a||(un (t)−un (s))||pW ds≤

k

∑i=1

1ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

(2p−1

ε (||un (t)||p + ||un (s)||p)+Cε |t− s|p/q)

dsdt

=k

∑i=1

2pε

∫ ti

ti−1

||un (t)||pW +Cε

ti− ti−1

∫ ti

ti−1

∫ ti

ti−1

|t− s|p/q dsdt

≤ 2pε

∫ b

a||un (t)||p dt +Cε

k

∑i=1

1(ti− ti−1)

(ti− ti−1)p/q∫ ti

ti−1

∫ ti

ti−1

dsdt

= 2pε

∫ b

a||un (t)||p dt +Cε

k

∑i=1

1(ti− ti−1)

(ti− ti−1)p/q (ti− ti−1)

2

≤ 2pεRp +Cε

k

∑i=1

(ti− ti−1)1+p/q = 2p

εRp +Cε k(

b−ak

)1+p/q

.

Taking ε so small that 2pεRp < η p/8p and then choosing k sufficiently large, it follows

||un−un||Lp([a,b];W ) <η

4.

Thus k is fixed and un at a step function with k steps having values in E. Now usecompactness of the embedding of E into W to obtain a subsequence such that {un} isCauchy in Lp (a,b;W ) and use this to contradict 21.10.49. The details follow.

Suppose un (t) = ∑ki=1 un

i X[ti−1,ti) (t) . Thus

||un (t)||E =k

∑i=1||un

i ||E X[ti−1,ti) (t)

21.10. SOME EMBEDDING THEOREMS 701and so[owt n(s))||h, ds1 ti >< [ hin [ ea) er 92 ay (De@ jah t—k ti ti7 — | / [Jun (t) = tn (8) |p dst. (21.10.50)ti — Cit Jy Jt;i=]From Lemma 21.10.1 if € > 0, there exists Cg such that||un (t) — un (8)| lq < € ||uln (4) — Un (5) || + Ce ||utn (t) — Un (5) I<2?! (lun (PII? + ||utn (8) ||?) +Ce |e — 5/4This is substituted in to 21.10.50 to obtainfi || (un (t) — tin (s))||2, ds <k 1 Tj Tjr—- | | eee GeGil Jt) Jtja fi — Li-= Save |" [lun (0) 12 + <— [" [i t—s|P/4dsatti] a 1 tj) Ytj-1| a< are [ u )\P dt +C. YS Mi a i- via dsdtlen) a dib 1= 2re | jen Ode + CoS tte)?a i=1 Vi i-1)*) I+p/qk< 2PER? + CoD (1)? =2PER? + Cok ( ii=1Taking € so small that 2?e€R? < n?/8? and then choosing k sufficiently large, it follows_ ui||Un — Un|| 77 ({a,b];W) < 4Thus k is fixed and 7, at a step function with k steps having values in E. Now usecompactness of the embedding of E into W to obtain a subsequence such that {i,} isCauchy in L? (a,b;W) and use this to contradict 21.10.49. The details follow.Suppose mi, (t) = Vk, u? Kir, ;) (t)- Thus||tn Cz le= Yili fir.) (F)