22.6. A MEAN VALUE INEQUALITY 717

Proof: Let v =∑nk=1 akvk. Then

f(x+v)− f(x) = f

(x+

n

∑k=1

akvk

)− f(x) .

Then letting ∑0k=1 ≡ 0, f(x+v)− f(x) is given by

n

∑k=1

[f

(x+

k

∑j=1

a jv j

)− f

(x+

k−1

∑j=1

a jv j

)]

=n

∑k=1

[f(x+akvk)− f(x)]+

n

∑k=1

[(f

(x+

k

∑j=1

a jv j

)− f(x+akvk)

)−

(f

(x+

k−1

∑j=1

a jv j

)− f(x)

)](22.6.13)

Consider the kth term in 22.6.13. Let

h(t)≡ f

(x+

k−1

∑j=1

a jv j + takvk

)− f(x+ takvk)

for t ∈ [0,1] . Then

h′ (t) = ak limh→0

1akh

(f

(x+

k−1

∑j=1

a jv j +(t +h)akvk

)− f(x+(t +h)akvk)

(f

(x+

k−1

∑j=1

a jv j + takvk

)− f(x+ takvk)

))

and this equals (Dvk f

(x+

k−1

∑j=1

a jv j + takvk

)−Dvk f(x+ takvk)

)ak (22.6.14)

Now without loss of generality, it can be assumed that the norm on X is given by

||v|| ≡max

{|ak| : v =

n

∑j=1

akvk

}

because this is a finite dimensional space, all norms on X are equivalent. Therefore, from22.6.14 and the assumption that the Gateaux derivatives are continuous,

∣∣∣∣h′ (t)∣∣∣∣ =

∥∥∥∥∥(

Dvk f

(x+

k−1

∑j=1

a jv j + takvk

)−Dvk f(x+ takvk)

)ak

∥∥∥∥∥≤ ε |ak| ≤ ε ||v||

22.6. A MEAN VALUE INEQUALITY 717Proof: Let v=)7_) a:Vx. Thennf(x+v)—f(x)=f[ xt+ ) avy | —£(x).k=1Then letting yey = 0, f(x+v) —f(x) is given byEll: ' "} Een)n~de (x + axvi) —£(x)]+n k k-1y? (¢ (x: y? on) -fia-+a)) — (« [xi y? on) -*) (22.6.13)k=1 j=l j=lConsider the k” term in 22.6.13. Letk-1h(t)=f [» y ajVj va: —f(x+taxvx)j=lfort € [0,1]. Then1 k-1h(t) = cain (1 (+ Lam (Hae) —f(x+(t+h) agv,)h-0 axk-1—|f{[xt+ y? ajVjt+tayv, | —£(x+tagvy)j=land this equalsk-1Dy, £ x+ y AjVj +tagv, | — Dy, £(x+ tagV,) ak (22.6.14)j=!Now without loss of generality, it can be assumed that the norm on X is given byn||v|| = x Zamj=lbecause this is a finite dimensional space, all norms on X are equivalent. Therefore, from22.6.14 and the assumption that the Gateaux derivatives are continuous,k-1[pus [x y ajvj +a: batten) ak|b (7)]|j=lIA€ |ax| < €||y||