22.13. ANALYTIC FUNCTIONS 741

=1

2πi

∫C1

f(x+w1h1 +∑

lm=2 zmhm

)(w1− z1)

dw1

=

(1

2πi

)2 ∫C1

1w1− z1

·

∫C1

f(x+w1h1 +w2h2 +∑

lm=3 zmhm

)(w2− z2)

dw2dw1 =(1

2πi

)l ∫C1

· · ·∫

C1

f (x+w1h1 +w2h2 + · · ·+wlhl)

∏lm=1 (wm− zm)

dwl · · ·dw1.

Consider the case when l = 2.(1

2πi

)2 ∫C1

∫C1

f (x+w1h1 +w2h2)

(w1− z1)(w2− z2)dw2dw1 =

(1

2πi

)2 ∫C1

∫C1

f (x+w1h1 +w2h2) ·

∑k2=0

zk22

wk2+12

∑k1=0

zk11

wk1+11

dw2dw1 =

(1

2πi

)2 ∞

∑k2=0

∑k1=0

(∫C1

∫C1

f (x+w1h1 +w2h2)

wk2+12 wk1+1

1

dw2dw1

)zk2

2 zk11 .

Similarly, for arbitrary l, and letting C be any circle centered at 0 with radius smaller thanδ

l ,

f

(x+

l

∑m=1

zmhm

)=

∑kl=0· · ·

∑k1=0

ak1···kl (x,hl , · · · ,h1)zk11 · · ·z

kkl (22.13.35)

whereak1···kl (x,hl , · · · ,h1)

=

(1

2πi

)l ∫C· · ·∫

C

f(x+∑

lm=1 wmhm

)∏

lm=1 wkm+1

mdw1 · · ·dwl . (22.13.36)

Lemma 22.13.2 Let l ≥ 1 and let tm ∈ C. Then if h ∈ X l , then whenever |z| is smallenough, 22.13.35 holds. Also the coefficients satisfy

ak1···kl (x, tlhl , · · · , t1h1) =

(l

∏m=1

tkmm

)ak1···kl (x,hl , · · · ,h1) (22.13.37)

and ∥∥ak1···kl (x,hl , · · · ,h1)∥∥≤C

l

∏m=1∥hm∥ (22.13.38)

for some constant C.

22.13. ANALYTIC FUNCTIONS 741Ff (x+ wiki +¥i.—2Zmltm)=— dw2ni Jc, (wi —z1)— \ Qn Cc) Wi— 21h h ! 3 Zmhjf ferm 1+ woh2 + Yi—3 Zn ) awedwy _(w2 — z2)(= ) [- ff (xtwyhy +woh2 +--+ +w7hy)j dw,---dwy.20i C C | [n=l (Win —%m)Consider the case when | =(5 ) ‘ f (x+w hy +woh2)dw2dw =20i CJC, (wi — 21) (w2 — 22)2(=) [ [ f (xtwyih,; +wohr)-© 72 co zi2 1 _Y kot k+l dw2dw| =ky=0W ky =0 Wy1 a 2 f (xtwihy + wh) ky kdw2dwy | z,’z,!.(sx) ae E(L,/ Cc witty itl et PsSimilarly, for arbitrary /, and letting C be any circle centered at 0 with radius smaller than5TD?m=1 k,=0 ky =01 co cof (- y ct] = PY dyn, (ha ar) Gl zt (22.13.35)whereky +k (x, hi, tte 1)f (x+D)_ 1Wm lm)-(35) [of dw, ---dwy. (22.13.36)IL, | what 1Lemma 22.13.2 Let 1 > 1 and let tm € C. Then if h € X', then whenever |z| is smallenough, 22.13.35 holds. Also the coefficients satisfyAk) «ky (x, th,- . thy) = (11 w) ak, “ky (x sAy,- . - hy) (22.13.37)andlay ky (Mtr yh lsc TT ln | (22.13.38)for some constant C.