22.13. ANALYTIC FUNCTIONS 743
Proof: Recall that
f
(x+
l
∑m=1
zmhm
)=
∞
∑kl=0· · ·
∞
∑k1=0
ak1···kl (x,hl , · · · ,h1)zk11 · · ·z
kkl
and so one can write the following where gnm is defined in the following expression.
g(x+ z1h1 + z2h2) =∞
∑m=0
∞
∑n=0
gmn (x,h1,h2)zm1 zn
2.
Thus,
g(x+ z1h1) =∞
∑m=0
gm0 (x,h1,h2)zm1 = g(x)+
∞
∑m=1
bm (x,h)zm1 ,
g(x+ z2h2) =∞
∑n=0
g0n (x,h1,h2)zn2 = g(x)+
∞
∑n=1
bn (x,h)zn2
which implies
gm0 (x,h1,h2) = bm (x,h1) , g0n (x,h1,h2) = bn (x,h2) .
Now let z1 = z2 = z. Then
g(x+ z(h1 +h2)) = g(x)+∞
∑n=0
bn (x,h1 +h2)zn
= g(x)+ z(g10 (x,h1,h2)+g01 (x,h1,h2))+higher order terms in z.
Therefore,
b1 (x,h1 +h2) = g10 (x,h1,h2)+g01 (x,h1h2)
= b1 (x,h1)+b1 (x,h2)
Lemma 22.13.4 Suppose a(x,hl , · · · ,h1) is multilinear, (hi→ a(x,hl , · · · ,h1) is linear),
||a(x,hl , · · · ,h1)|| ≤Cl
∏m=1||hm||,
andDl−1 f (x+hl)(hl−1) · · ·(h1)−Dl−1 f (x)(hl−1) · · ·(h1)
−a(x,hl , · · · ,h1) = o(||hl ||).
Then Dl f (x) exists and
Dl f (x)(hl)(hl−1) · · ·(h1) = a(x,hl , · · · ,h1).