784 CHAPTER 23. DEGREE THEORY

where h(x) ≡ g(x+xi)− y. There is no restriction on the size of r. Consider one of theterms in the sum. d (h,B(0,r) ,y) . Note Dh(0) = Dg(xi) .

h(x) = Dh(0)x+o(x) (23.7.16)

Now let

L(z1, ...,zp)≡

 ∇h1 (z1)...

∇hp (zp)

By the mean value theorem applied to the components of h, if x ̸= 0,∥x∥ ≤ r, there existz1, ...,zp ∈ B(0,r)×·· ·×B(0,r)

∥h(x)−h(0)∥∥x∥

=∥h(x)−0∥∥x∥

=

∥∥L(z1, ...,zp)x∥∥

∥x∥=

∥∥∥∥L(z1, ...,zn)

(x∥x∥

)∥∥∥∥ (23.7.17)

Since Dh(0)−1 exists, we can choose r small enough that for all (z1, ...,zp) ∈ B(0,r)×·· ·×B(0,r)

det(L(z1, ...,zp)) ̸= 0

Hence, for such sufficiently small r, there is δ > 0 such that for S the unit sphere,

{x :∥x∥= 1} ,

inf{∥∥L(z1, ...,zp)x

∥∥ : (z1, ...,zp,x) ∈ B(0,r)×·· ·×B(0,r)×S}= δ > 0

Then it follows from 23.7.17 that if ∥x∥ ≤ r, ∥h(x)∥∥x∥ ≥ δ so ∥h(x)−0∥ ≥ δ ∥x∥. Letting∥x∥= r so x ∈ h(∂B(0,r)) ,

dist(h(∂B(0,r)) ,0)≥ δ r

Now pick ε < δ . Making r still smaller if necessary, it follows from 23.7.16 that if∥x∥ ≤ r,

∥h(x)−Dh(0)x∥ ≤ ε ∥x∥< δ r ≤ dist(h(∂B(0,r)) ,0)

Thus,∥h−Dh(0)(·)∥

∞,B(0,r) < dist(h(∂B(0,r)) ,0)

and so d (h,B(0,r) ,0) = d (Dh(0)(·) ,B(0,r) ,0).Say A = Dh(0) an invertible matrix. Then if U is any open set containing 0, it follows

from the properties of the degree that d (A,U,0) = d (A,B(0,r) ,0) whenever r is smallenough. By the product formula and 3. above,

1 = d (I,B(0,r) ,0) = d(A−1A,B(0,r) ,0

)= d (A,B(0,r) ,AB(0,r))d

(A−1,AB(0,r) ,0

)+d(

A,B(0,r) ,AB(0,r)C)

d(

A−1,AB(0,r)C,0)

784 CHAPTER 23. DEGREE THEORYwhere h(x) = g(x+x;) —y. There is no restriction on the size of r. Consider one of theterms in the sum. d (h,B(0,r),y). Note Dh (0) = Dg (x;).h(x) = Dh(0)x+0(x) (23.7.16)Now letVhy (z1)L(%,...,Zp) = :Vip (Zp)By the mean value theorem applied to the components of h, if x 4 0, ||x|| < 7, there existZ|,-..,Zp € B(O,r) x --- x B(O,r)n(x) —h(0)|| _ h(x) —O|] _ ||L(@1,-.-.2p) x= [Lert (ay) | (23.7.17)I[x|| |x| |x|Since Dh(0)~! exists, we can choose r small enough that for all (21, .Zp) € B(O,r) x--- x B(0,r)det (L(z1,...,Zp)) #0Hence, for such sufficiently small r, there is 6 > 0 such that for S the unit sphere,{x :||x|| = 1},inf { ||L(21,....2p) | : (Z1,+..,Zp,X) € B(0,r) x --- x B(O,r) x st =6>0Then it follows from 23.7.17 that if ||x|| <r, MUP! > 6 so || (x) — | > 5 |[x||. Letting\Ix|| =r sox €h(AB(0,r)),dist (h (2B (0,r)) ,0) > drNow pick € < 6. Making r still smaller if necessary, it follows from 23.7.16 that ifIIx|| <7,\|h (x) — Dh (0) x|| < €||x|| < dr < dist (h (OB (0,r)) ,0)Thus,||h—Dh (0) (-) < dist (h (0B (0,r)) ,0)500.7)and so d (h,B (0,r) ,0) = d (Dh (0) (-) ,B(0,r) ,0).Say A = Dh(0) an invertible matrix. Then if U is any open set containing 0, it followsfrom the properties of the degree that d(A,U,0) = d(A,B(0,r),0) whenever r is smallenough. By the product formula and 3. above,1 =d(I,B(0,r),0) =d(A_'A,B(0,r) ,0)= d(A,B(0,r),AB(0,r))d(A~',AB(0,r) ,0)+d (4.8 (0,r) AB (0, r)) d (47',4B (0, r) .0)