25.7. MAXIMAL MONOTONE OPERATORS 901

Proof: Let α = limsupn→∞

⟨Aλ n xn,xn

⟩. It is finite because the expression is bounded

independent of n. Then

lim supm→∞

(lim sup

n→∞

( ⟨Aλ n xn,xn

⟩+⟨Aλ mxm,xm

⟩−[⟨

Aλ nxn,xm⟩+⟨Aλ mxm,xn

⟩] ))≤ 0

Thuslim sup

m→∞

(α +

⟨Aλ m xm,xm

⟩−[⟨x∗,xm⟩+

⟨Aλ mxm,x

⟩])≤ 0

and so2α−2⟨x∗,x⟩ ≤ 0

The next simple observation is that∥∥Aλ nxn∥∥= ∥∥∥λ

−(p−1)n F

(Jλ nxn− xn

)∥∥∥≤C

due to the weak convergence. Hence λ−(p−1)n

∥∥Jλ nxn− xn∥∥p−1 ≤C and so∥∥Jλ nxn− xn

∥∥≤ λ nC1/(p−1). (25.7.59)

Thus if [u,u∗] ∈ G (A) ,

lim infn→∞

⟨Aλ nxn−u∗,xn−u

⟩= lim inf

n→∞

⟨Aλ nxn−u∗,Jλ nxn−u

⟩≥ 0

because Aλ x ∈ AJλ x. However, the left side satisfies

0 ≤ lim infn→∞

⟨Aλ nxn−u∗,xn−u

⟩≤ lim sup

n→∞

⟨Aλ nxn−u∗,xn−u

⟩= lim sup

n→∞

[⟨Aλ nxn,xn

⟩−⟨Aλ nxn,u

⟩−⟨u∗,xn⟩+ ⟨u∗,u⟩

]= α−⟨x∗,u⟩−⟨u∗,x⟩+ ⟨u∗,u⟩ ≤ ⟨x∗,x⟩−⟨x∗,u⟩−⟨u∗,x⟩+ ⟨u∗,u⟩= ⟨x∗−u∗,x−u⟩

and this shows that [x,x∗] ∈ G (A) since [u,u∗] was arbitrary.Next let [u,u∗] ∈ G (A). Then thanks to 25.7.59,

0 ≤ lim infn→∞

⟨Aλ nxn−u∗,Jλ nxn−u

⟩= lim inf

n→∞

⟨Aλ nxn−u∗,xn−u

⟩≤ lim sup

n→∞

⟨Aλ nxn−u∗,xn−u

⟩= lim sup

n→∞

(⟨Aλ nxn,xn

⟩−⟨Aλ nxn,u

⟩−⟨u∗,xn⟩+ ⟨u∗,u⟩

)= lim sup

n→∞

⟨Aλ nxn,xn

⟩−⟨x∗,u⟩−⟨u∗,x⟩+ ⟨u∗,u⟩

≤ ⟨x∗,x⟩−⟨x∗,u⟩−⟨u∗,x⟩+ ⟨u∗,u⟩= ⟨x∗−u∗,x−u⟩

In particular, you could let [u,u∗] = [x,x∗] and conclude that

limn→∞

⟨Aλ nxn− x∗,xn− x

⟩= lim

n→∞

(⟨Aλ nxn,xn

⟩−⟨Aλ nxn,x

⟩+ ⟨x∗,x⟩−⟨x∗,xn⟩

)= lim

n→∞

⟨Aλ nxn,xn

⟩−⟨x∗,x⟩+ ⟨x∗,x⟩−⟨x∗,x⟩= 0

25.7. MAXIMAL MONOTONE OPERATORS 901Proof: Let o = limsup,_,., (Aj,,%n,Xn) - It is finite because the expression is boundedindependent of n. Thenlim sup (iim sup ( ete + Mintn )) <0— (Aj,XnsXm) + (Ag Xm Xnm—y00 n—yo mThuslim sup (a + (AjyXmsXm) = [(x*, xm) + (Aq,,%m>X)]) <0m—yooand so2a —2(x*,x) <0The next simple observation is that||Aa,,xn| PF (Jy,Xn — Xn)iscdue to the weak convergence. Hence a PV) || Ja,,Xn —Xn Vr! <C and so\lJanxn —Xn|] < AWC PD, (25.7.59)Thus if [u,u*] € Y (A),lim inf (Ay,4n —U",Xn —u) = lim inf (Ag,,%n —U"Jn,%n —U) 20because Ayx € AJ,.x. However, the left side satisfiesO <_ lim inf (Aj,%n— way —u) < lim sup (An,Xn — U" Xn — U)= lim sup [(Ay,Xn,%n) — (Ag, Xn, U) — (u* Xn) + (uu) |Nn—yoo= a—(x*,u)—(u*,x)+ (uu) < (x*, x) — (x*,u) — (u* x) + (u*,u)= (*—u"*,x—u)and this shows that [x,x*] € Y (A) since [u, u*] was arbitrary.Next let [u,u*] € Y (A). Then thanks to 25.7.59,0 < lim inf (Aa, Xn —U" JQ, Xn — U) = lim inf f (Aa, Xn —U",Xn —U)< lim sup (Aj,.%n —u* Xn —u)n—soo= lim sup ((Aj,%n,4n) — (Aq,%n,U) — (U*,xn) + (u*,u))n— oo= lim sup (Ag,,.%n,Xn) — (x*,u) — (u*,x) + (u*,u)n—s0o<x" x) — Gu) — a" x) + (u* uu) = * —u* x —u)In particular, you could let [u, u*] = [x,x*] and conclude thatlim (Aj, Xp —X*,X_ — x) = lim ((Ay,,XnsXn) — (Ag, Xn, x) + (X*,x) — (X*,Xn))n—yoo n—yoo= lim (Aq, Xn,Xn) — (X" x) + (x, x) — (x*,x) =0noo